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Preface

Although the global food production has increased in recent decades, the global
food demand increases more rapidly than production. It has been reported by FAO
that demand for cereals will increase by 70 % by 2050 as an outcome of both larger
populations and higher per-capita consumption among communities with growing
incomes. To meet higher demand, growing more food at affordable prices becomes
even more important.

Agricultural proteomics can play a role in addressing the growing demand for
food. The application of proteome science in agriculture has allowed researchers to
identify a broad spectrum of proteins in living systems and associates them to many
major traits. It may give clues not only about nutritional value, but also about yield
production and food quality and how environments affect these factors. In recent
years, technical improvements in the mass spectrometry, bioinformatics, protein
extraction, and separation have made the high-throughput analysis of agricultural
products feasible and the reproducibility of the technology has reduced errors in
assaying protein levels. Meanwhile, the application of mass spectrometry-based
quantification methods has become mainstream in recent year. The rapid advances
of genome-sequencing tools also paved the way to sequence the full genome of
many crops, animals, insects, and microorganisms. This provided Proteomics
Scientist with a huge number of reference genome and genes for genome-wide
proteome analysis.

An emerging field of the proteomics aimed to integrate knowledge from basic
sciences to translate it into agricultural applications to solve issues related to eco-
nomic values of farm animals, crops, food security, health, and energy sustain-
ability. Given the wealth of information generated and to some extent applied in
agriculture, there is a need for more efficient and broader channels to freely dis-
seminate the information to the scientific community.

This book will cover several topics to elaborate how proteomics may enhance
agricultural productivity. These include crop and food proteomics, farm animal
proteomics, aquaculture, microorganisms, and insect proteomics. It will also cover
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several technical advances, which may address the current need for comprehensive
proteome analysis.

Karaj, Iran Ghasem Hosseini Salekdeh
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Chapter 1
Applications of Quantitative Proteomics
in Plant Research

Mehdi Mirzaei, Yunqi Wu, David Handler, Tim Maher,

Dana Pascovici, Prathiba Ravishankar, Masoud Zabet Moghaddam,
Paul A. Haynes, Ghasem Hosseini Salekdeh, Joel M. Chick

and Robert D. Willows

Abstract Over the past two decades, we witnessed significant technological
advances in Proteomics. Methodology and instrumentation have developed
remarkably and proteomics has become a priority field of research in biology.
Furthermore, analysis of the entire proteome of many organisms became possible
due to complete genome sequencing. The advances in mass spectrometry instru-
mentation and bioinformatics tools have advanced quantitative proteomics tech-
niques, resulting in important contributions to the biological knowledge of plants.
In this chapter, we highlight the recent applications of proteomics in plants, in both
model and non-model species. We then discuss the pros and cons of the major
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quantitative approaches implemented in plant studies. Next, we describe the most
studied post-translational modifications (PTMs) in plant research, and lastly, we
review the challenges of bioinformatics data analysis in the plant proteomics field.

Keywords Mass spectrometry - Quantitative proteomics - Post-translational
modification

1.1 Introduction

Over the past 15 years, significant technological advances in methodology and
instrumentation have developed proteomics into a powerful tool. For this reason
proteomics is a priority field of research in biology. These advances combined with
breakthrough technologies in genomics have allowed complete sequencing of the
genome of an organism. Analysis of the entire proteome of an organism became
possible for the first time [1] due to complete sequencing. These advances allowed
the study of not only entire proteomes but also the changes which occur under various
perturbations. These studies provide the means to understand protein regulation,
function and protein interactions [2]. In particular, proteomics can now, for a specific
complement of proteins present in a biological system at any one time, set out to
answer the questions of “what?”, “how?”, “where?”, and “when?” for those proteins
in that system [3]. Plant sciences in particular have benefited from proteomics
technology by studying and identifying metabolic pathways and protein functions,
and identifying protein-protein interactions within model and crop plant systems.

A PubMed search covering the period between 2001 and 2016 using the search
terms “plant and proteomics” revealed over 5500 research and review articles. One
of the first proteomics plant studies was published by Pfannschmidt et al. in 2000.
In this study the authors used two-dimensional gel electrophoresis for the analysis
of the chloroplast polymerase A from mustard (Sinapis alba L.) [4].

Since then, the evolution of mass spectrometry instrumentation (MS), sample
preparation protocols, and bioinformatics data analysis platforms have advanced
quantitative proteomics techniques, resulting in important contributions to the
biological knowledge of plants. Most of the plant proteomics papers published to
date on model plants apply to the subgroups of descriptive, subcellular, and com-
parative proteomics [5]. Of these sub-areas, comparative proteomics is the most
concerned with quantitative analysis, as it aims to highlight quantitative differences
in proteins expressed between different genotypes, organelles, cell types, devel-
opmental stages and external conditions of an organism. Such studies have pro-
vided valuable information on plant biological processes, although without further
functional analysis the proteomics data remain mostly descriptive [6]. A typical
plant proteomics experimental pipeline from recent literature starts with a com-
parative proteomics analysis, followed by bioinformatic analyses of protein
expression data.
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1.2 Proteomics of Model and Non-model Plant Species

Quantitative proteomics approaches have largely been dedicated to model plant
species [3]. In proteomics, these are species with a completely sequenced and well
annotated genome. This information is typically made available in comprehensive
databases such as that of the National Centre for Biotechnology Information
(NCBI), which greatly assists in correct protein identification. At present, a total of
165 land plant species meet the model plant criteria. However, compared to the
3002 eukaryotic and 67,762 prokaryotic genomes sequenced to date (NCBI-April
2016), plants are highly under-represented. This relative shortfall is largely the
result of plant genomes being greater in size and complexity, which makes them
more difficult to sequence and annotate compared to other organisms [7]. To date,
the plant species chosen as models are either species with relatively small genomes,
or crop species of great economic value. The main application of plant proteomics
being to better understand how crop species regulate development and respond to
environmental changes [3, 6]. The first plant species to be sequenced was the dicot
Arabidopsis thaliana in 2000 [8], which was soon followed by the complete
sequencing of the economically important monocot rice (Oryza Sativa) in 2002 [9].

To date, proteomics studies concerned with model plants have provided key
insights into a variety of protein families in plant systems, and how they are
regulated and modified [6]. However, model plants alone do not possess all the
features and processes of interest to plant biology [7]. Thus, ‘orphan species’, those
without complete sequencing or adequate annotation, need to be investigated.
Compared to model species the lack of genomic resources has seen orphan species
largely neglected by quantitative proteomic studies [10]. Whether a species
becomes a model is a trade-off between economic importance and the size and
difficulty of sequencing its genome. Therefore, orphan plant species tend to be
either not of great economic significance, or possess large, complicated genomes or
both [11]. However, crop species often possess large genomes which is largely the
reason that many remain as orphan species [11]. Most current MS-based proteomics
methods rely on comprehensive sequence databases for identification and quanti-
tation, thus the analysis of these “orphan species” poses specific challenges. These
challenges can be at least partially overcome through utilising the sequence data-
bases available from closely related species, or using databases of expressed
sequence tags (EST) instead [12].

ESTs constitute a random snapshot of the expressed portion of the genome of a
biological system at a moment in time in response to certain conditions. EST
sequencing is seen as the most economical method of obtaining gene sequence
information for orphan species [13]. Once collected, these ESTs are then added to
databases for future protein identification in these species. However, the quality of
EST sequences can vary greatly, so they need to be used very carefully in making
confident protein identifications [14]. For those orphan species that do not have a
sufficient number of ESTs available, protein identification may instead be achieved
by relying on the established sequence databases of closely related model species
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[15]. This method relies on the fact that many of the same genes are conserved
between closely related species [16]. However, this is a less accurate method,
especially for quantitative approaches, as it is not possible to know how many
peptide assignments are taken into account, this due to sequence variation between
species. Moreover, homologous proteins in different species often possess different
functions and as the species become more distantly related the number of sequence
mismatches increases [17]. Nevertheless, relying on this principle of shared protein
sequence identity between related species has enabled quantitative proteomics
approaches to be applied to many orphan species.

In the event that no ESTs and no closely related model species exist for a
particular orphan species, the method of de novo peptide sequencing may be used
[18]. This method derives the sequence of the peptide solely from the tandem mass
spectra output with no need for an existing sequence database [19]. A common
error in using this approach is wrongly identifying amino acids from mass spectra
that share very similar masses. However, the recent development of very high
resolution mass spectrometry instrumentation suitable for proteomics analysis, for
example Orbitrap MS, has greatly reduced this sequence ambiguity, increasing the
accuracy of peptide sequencing and providing more confident protein identifica-
tions [3]. This is still not really applicable when it comes to large-scale or shotgun
proteomics studies, but it has been applied successfully in more targeted
approaches.

1.3 Quantitative Proteomics Approaches

Numerous quantitative proteomics techniques have been used in proteomic
research; however, not all of these are suitable for plant samples. Quantitative plant
proteomics studies pose a number of unique challenges compared to animal and
bacterial samples, such as: complications in protein extraction due to interfering
secondary metabolites; separation of low abundance proteins; presence of incred-
ibly high abundance proteins such as Rubisco in green plant tissues; genome
multiploidy; and, most importantly, the absence of well-annotated and completed
genome sequences [14]. Quantitative proteomic methodologies have undergone a
number of advances which assist in overcoming these experimental challenges
associated with plants. Evidently, 2-DE has been the most popular technique in
plant research until approximately 2010; however, there has been a linear decrease
in recent years. The second most used technique (label-free) reached its peak in
2012, however it seems the technique has lost its popularity and levelling off in the
past couple of years. On the other hand, an emerging technology (chemical isobaric
labelling approaches) is following an upward trend and it is estimated to keep on
the same trend at least for the next few years to come (Fig. 1.1). Advances in high
mass accuracy mass spectrometers, as well as multiplexing power of chemical
isobaric labelling application in analysing the proteome and PTMs, are the main
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Fig. 1.1 Over all distribution of quantitative proteomics techniques used in plant proteomics
studies over the period of 2000-2015

reasons behind the increasing attractiveness of chemical isobaric labeling approa-
ches (Fig. 1.1).

In this section we briefly discuss the major quantitative proteomics approaches
used in plant research.

1.3.1 Multi-dimensional Protein and Peptide
Separation Methods

The first quantitative proteomics studies were performed by separating proteins via
two dimensional gel electrophoresis (2-DE). In this approach, proteins are separated
based on their isoelectric point (pl) in the first dimension, then separated based on
molecular weight in the second dimension. Identification of proteins from 2-DE
gels is obtained by excising protein spots, digesting with trypsin, extracting pep-
tides, and then analysing the resultant peptides by mass spectrometry. One of the
major advantages of 2-DE-based proteomic methods [20, 21] is that they provide a
visual output for protein profiling and comparative mapping of expressed proteins
between biological samples. Applications of 2-DE have been reported extensively
in various plant species, such as Arabidopsis [22, 23], soybean [24, 25], rice
[26-28], wheat [29, 30], and many others [31-35]. However, there are considerable
drawbacks to this technique, including the fact that certain groups of proteins are
poorly represented on 2D gels. Such poorly represented proteins include those with
large molecular weights, highly basic proteins with high pI’s, and hydrophobic
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proteins such as membrane spanning proteins which suffer due to poor solubility in
2-DE sample buffer. In addition, the detection of low abundance proteins is limited
by total protein loading. A problem particular to green plant vegetative tissue
samples is the presence of Rubisco, which can represent up to 60 % of the soluble
protein in green plant tissue. Rubisco quantities interfere with the detection of many
lower abundance proteins. For these reasons, 2-DE techniques are estimated to be
only capable of detecting up to about 30 % of all cellular proteins. Furthermore,
membrane proteins are poorly represented which is an issue for plant cells which
are packed by various specialized membranous structures [36]. One particular
technical drawback of 2DE technology, the detection of lower abundance proteins,
has been addressed by recent advancements of fluorescent dyes like SYPRO Ruby.
The main advantages of SYPRO Ruby protein gel stains are their linear quantitation
range, which spans almost over three orders of magnitude [37].

Despite these problems, 2-DE still remains a suitable approach for identification
and visualization of intact proteins [38]. In addition, 2-DE allows de novo
sequencing of individual protein spots, which facilitates identification of proteins
from plants with unsequenced or incomplete genomes. As an example, 2D-DIGE
was used in characterization of the strawberry proteome during ripening and
developing stages, and correlation between different genotypes [39]. Another study
employed 2D-DIGE to examine proteome expression changes of bark tissues of
peach (Prunus persica L. Batsch) in exposure to low temperature and short pho-
toperiod [40]. Furthermore, the technique is still considered a useful tool to detect
protein isoforms and modified proteins for which there are no effective and efficient
enrichment strategies available [41].

To address some of the issues with 2DE, the higher throughput Mudpit tech-
nique was introduced. Multidimensional protein identification technique (MuDPIT)
is a HPLC peptide separation method coupled with mass spectrometry which is
more capable than 2-DE of identifying less abundant, basic, hydrophobic and
membrane-spanning proteins [42]. Mudpit analysis requires that all proteins in a
sample be digested into peptides before the separation steps. Differential compar-
ative quantitation studies by Mudpit have been reported using isotope labeling
in vitro [43] or in vivo [44]. One of the earliest reports in this area used Mudpit in
parallel with 2-DE to characterize the proteome of rice leaf, root and seed tissues,
which included the identification of more than 2500 unique proteins [45].

1.3.2 Stable Isotope Labelling (Chemical-Metabolic)

Stable isotope labelling is a powerful quantitative proteomics approach, which has
been used in a large number of plant studies. These techniques are divided into two
major groups; chemical and metabolic labelling. In chemical labelling techniques
(ICAT, iTRAQ, TMT and dimethyl labelling), differential isotopic labels are
incorporated into the samples after protein extraction and preparation, whereas in
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metabolic labelling (SILAC and 15N), labels are added to the growth media to be
metabolised by the cell and ultimately label the whole organism.

1.3.3 Chemical Labeling

1.3.3.1 ICAT

One of the first quantitative proteomics methods using chemical labeling reagents
was isotope coded affinity tagging (ICAT) [46]. This is a thiol specific proteomic
technique in which protein samples are labeled with light or heavy versions of
ICAT reagents on cysteine thiol groups. Samples are mixed and digested by an
endoprotease such as trypsin. The relative abundance changes in the proteome can
be obtained by comparing the intensities of labeled protein peaks with light and
heavy mass tags. The technique is capable of comparing the protein expression
changes between two biological samples. This approach has several drawbacks,
including the fact that it is limited to proteins containing cysteine residues, and is
less efficient at labeling acidic proteins. Applications of ICAT in plant proteomics
have been reported only in a few studies, mainly focused on organelle membrane
protein distribution such as characterizing the endoplasmic reticulum and Golgi
apparatus in Arabidopsis [47], mitochondrial membrane proteins in Arabidopsis
[48] and chloroplast soluble stromal proteins in maize leaves [49].

1.3.3.2 iTRAQ and TMT

Isobaric tags for relative and absolute quantitation iTRAQ) [50] and tandem mass
tag (TMT) [51] methods are designed based on isobaric labelling reagents. The
multiplexing capabilities of these techniques provide an opportunity to compare the
proteome of up to 8 samples in iTRAQ, and up to 10 samples in TMT, simulta-
neously in a single MS analysis. The isobaric tags with the same mono-isotopic
masses chemically label the N-terminus and the amine groups of the lysine side
chain of tryptic peptides. Labelled peptides from different samples/conditions are
combined, desalted, fractionated and analyzed using high mass accuracy mass
spectrometers. Upon fragmentation of the tag attached to the peptides, reporter ion
intensities are generated which are unique to the tags used in labelling of the
peptides from different biological samples. One of the major advantages of multi-
plexing is that MS1 complexity stays at a single proteome, whereas labelling
strategies that use MS1 based quantitation (except label-free) become more com-
plex in the MS1 as more labels are added. For example, SILAC or dimethylation
labelling with light and heavy reagents are twice as complex. In multiplexing, all of
the samples contribute to one peak. This contributes to depth of coverage. Hence,
there is no further penalty for increased multiplexing capabilities.
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The reporter ion intensities represent the relative abundance of the peptides and
proteins from which they are originated. Both iTRAQ and TMT techniques benefit
from their multiplexing power, however they have their own unique drawbacks
such as the cost of the reagents, and the need for very high mass accuracy spec-
trometers. Furthermore, specialised instrumentation is needed to handle the ability
to purify co-isolated peptides using MS3 strategies [52].

The use of iTRAQ and TMT has been reported in a large number of plant
quantitative studies in recent years (Fig. 1.1). For instance, iTRAQ was used to
investigate the response mechanism of various plants to a wide range of stresses
including cold [53], heat [54] drought [55] salinity [56], and heavy metals [57].
Similarly, TMT was used in comparative expression studies for a number of plant
species such as Arabidopsis [58, 59], rice [60], and barley [61].

The number of plant study reports using iTRAQ is significantly higher than
TMT, mainly because iTRAQ was introduced a few years ahead of TMT. However,
the higher multiplexing capability of TMT (TMT10plex compared to 8plex
iTRAQ), has already attracted the attention of plant researchers and it is expected
that the number of studies using TMT will rise over the next few years (Fig. 1.1).

1.3.4 Metabolic Labeling

The recent technological advances in proteomics enable the incorporation of stable
isotope labels into samples to accurately detect changes in protein abundance [62].
Metabolic labelling refers to the methods in which stable isotopes are incorporated
in vivo during the translation stage of the protein synthesis in cells [63]. The cells
are grown in the media supplemented with the isotopes, so that they are incorpo-
rated into the proteome metabolically. Mass spectrometric analysis is then per-
formed on digested lysates, and quantitation is performed by distinguishing the
mass shifts between light and heavy isotopes [64, 65]. Metabolic labelling is in vivo
labelling, and the different techniques of in vivo stable isotope labelling include '°N
labeling, Stable Isotope Labeling of Amino acids in Cell Culture (SILAC), *C
labelling. In plant proteomics, '>N and SILAC have been used to perform com-
parative studies on different metabolic states of the plant cells [65-68].

1.3.4.1 SILAC

Stable Isotope Labelling by Amino acids in Cell culture (SILAC) is the in vivo
incorporation of stable isotope-containing amino acids, such as arginine and lysine,
that label proteins during their cellular synthesis [69]. The technique is highly
efficient and reproducible and is considered a powerful tool for studying PTMs such
as phosphorylation. SILAC has been successful in numerous yeast and mammalian
studies [70-72]. However, this technique has not been as successful in plants.
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This might be due to poor labelling efficiency of autotrophic plant cells which are
able to synthesize all amino acids [65, 73]. To date, there are only three SILAC
based quantitation studies reported in plants. Two of these were carried on
Arabidopsis cell culture [65, 66] and the labelling efficiency did not exceed more
than 90 %. However, a recent study by Lewandowska et al. [74] demonstrated a
technique to label the whole Arabidopsis seedlings using stable isotope-containing
arginine and lysine with more than 95 % labelling efficiency [74]. The reliability
and efficiency of this method remains to be confirmed in future studies. In general,
drawbacks of any MS1 based quantitation strategy stem from higher false positive
rates in the regulated set of proteins that are quantified from single peptide-based
protein identifications. This is because random assignments are more likely to have
only one isotope identified. The chance of identifying both isotopes simultaneously
for the same random peptide is much less likely.

1.3.4.2 >N Labelling

Metabolic labelling with >N appears to be more suitable for plant studies due to the
fact that nitrogen is usually a limiting factor in plant growth, and '’N-containing
salt as the sole nitrogen source can be added to plant cell cultures or the whole plant
systems and be efficiently incorporated into amino-acids and proteins. Metabolic
labelling with the heavy isotope of nitrogen could be full or partial depending upon
the amount of the heavy '°N isotopes used. In full labelling, up to 98 % of the
proteinaceous nitrogen is labelled with >N isotopes, while in partial labelling a
lower percentages of the heavy nitrogen is incorporated.

1.3.4.3 Different Experimental Approaches of '*N Labeling in Plants

Labeling with K'°NO; has been carried out in various systems such as Arabidopsis
cell culture [75] and whole Arabidopsis plants grown in liquid nutrient media using
the hydroponic isotope labeling of entire plants (HILEP) [68]. In labeling the cells
with >N, two populations of cells (control cells and treatment cells or normal cells
and stress affected cells) are grown in two distinct media containing '’N and '*N.
The two samples are mixed, processed and subjected to mass spectrometry analysis.
The peptides from both the control and the treatment samples have the same
chemical properties but exhibit mass difference because of the heavy isotope
labeling that is detectable by the mass spectrometer [S]. On comparing the peak
intensities between the two samples the difference in the expression of the proteins
is analysed [1]. The different experimental strategies that have been used to analyse
plants range from full to partial labelling techniques, reciprocal labeling and pulse
labeling techniques. Several experiments were performed using 15 N-labeling in
plants systems with the aim of developing the method on plants including, Glycine
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max (Soyabean) [76], Arabidopsis thaliana [77, 78], Solanum lycopersicum
(Tomato) [79], Hordeum vulgare) (Barley) [80].

1.3.4.4 Full "*N-Labeling

Complete or full metabolic labeling refers to labeling all of the nitrogen in the cells
with heavy nitrogen. The main challenge present in full metabolic labeling is
achieving the efficient growth of an organism supplemented with N'° entirely [78].
Successful full metabolic labeling for proteomic investigation was demonstrated
with complete efficiency of labeling intact plants in Arabidposis thaliana [81]. The
plants to be labeled were grown in media containing 98 % of '’NHi’NO; and
K'°NOj in place of natural abundance salts. Complete incorporation of about 98 %
of the heavy nitrogen was achieved in the Arabidopsis seedlings. The evaluation of
the performance of MASCOT, a standard MS/MS search engine was also evaluated
for the combined analysis of the '*N and '’N-labeled peptide samples of
Arabidopsis seedlings which proves the application of '*N-metabolic labeling for
quantitative proteomics analysis with excellent incorporation [81].

1.3.4.5 Partial "*N-Labeling

An alternative strategy to use isotope labeling was proposed by Whitelegge et al.
[82] which was to decrease the amount of heavy nitrogen used for labeling resulting
in partial labeling. It was reported that when both the natural and the partial labeled
forms were combined, the shape of the resulting isotopic envelope is used to
determine the relative amount of each peptide present in the sample mixture which
enables information to be extracted from partial metabolic labeling rather than full
metabolic labeling [82]. A comparison of full and partial metabolic labeling in
Arabidopsis thaliana was made by Huttlin et al. [78]. In this experiment, labeled
and unlabeled mixtures of Arabidposis peptides were first analysed using both full
and partial labeling, each technique was assessed for consistency, dynamic range
and reproducibility under controlled conditions. Further analysis of light versus
dark grown Arabidopsis using both the techniques was carried out to analyse the
performance. It was found that with partial metabolic labeling allowed the more
complete biological comparison of the protein expression that exhibited significant
changes under conditions, where full metabolic labeling failed to give reliable
quantitative information. Partial metabolic labeling also serves as a much more
economic way of metabolic labeling [78] by decreasing the cost of the labelled
nutrients, and allows the quantification of more peptides across the whole dynamic
range. But, from the thorough comparison of the full and partial labeling tech-
niques, partial metabolic labeling is more challenging in the automated identifica-
tion of labeled and unlabeled peptide pairs and in the quantification of the change in
the isotope cluster distribution [83].
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1.3.5 Reciprocal Labeling

In a reciprocal labeling experimental strategy, two pools of samples for e.g. control
and treatment samples or mutant and wild type samples, are inversely labeled with
heavy nitrogen in such a way that the label is associated once with the treatment and
once with sample and vice versa. Pair wise comparisons made from the mass
spectrometric analysis would be used to evaluate the changes in the protein
abundance [83]. In plant proteomics, reciprocal heavy metal labeling has been used
to study stress physiology including the study of the effect on elicitors on protein
phosphorylation [84], and microdomain composition of Arabidopsis and tobacco
using cell cultures [85, 86]. Whole-plant studies have been carried out to charac-
terize the effect of abscisic acid treatment on phosphorylation [86], and protein
abundance changes have been monitored during heat shock responses [68] and leaf
senescence [87].

1.4 Label-Free Quantitation

Label free quantitation has become popular over the years mainly owing to its ease
of use and application in a wide range of biological studies [26, 88]. It is subdivided
into two separate strategies; spectral counting (SC) [89] and area under the curve
(AUC) [90]. In label free quantitative shotgun proteomics, both control and sample
are subjected to separate LC-MS/MS analysis, and protein quantitation is performed
on either peak intensity of the same peptide or the number of spectral counts for the
same proteins [91]. In the SC approach the most abundant peptides will be selected
for further fragmentation, hence the abundance of generated MS/MS spectra is
proportional to the protein amount in data-dependent acquisition whereas in the
AUC approach the protein abundances are estimated from the measurement of the
changes in ion intensity of chromatographic peak areas or heights.

All quantitative MS approaches have their own advantages and drawbacks.
Some issues are common among all relative quantitative MS and MS/MS
approaches, such as: accounting for peptides that are shared between different gene
products or protein isoforms, and issues of missing peptide ions between biological
replicates. Missing peptide ions are especially problematic for low abundance
proteins that are close to the detection limit of the mass spectrometer.

Label-free quantitation, whether based on the number of peptides for the spectral
counts approaches, or peak intensity for the area under the curve (AUC)
approaches, also has specific limitations. The specific drawbacks to spectral
counting are that the actual relative fold changes in protein abundance are not easily
calculated and the detection of differential protein abundance is difficult for proteins
that generate low spectral counts (<5). In the case of AUC relative quantitation,
there are certain concerns regarding variation in MS1 signal intensity and chemical
and biological interferences between replicates due to changes in chromatography
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performance from run-to-run. Despite these caveats, label free quantitative pro-
teomics remains a versatile and practical approach for global proteome profiling
studies. For low mass accuracy instruments, including ion traps, spectral counting is
the method of choice over AUC. However, label-free AUC quantitative workflows
have been increasing in use, largely due to improved computational platforms and
wider availability of high accuracy mass spectrometers.

Label-free quantitative proteomics has been the method of choice over other
techniques for the majority of the plant discovery experiments, mainly due to its
affordability and ease of use features. In our lab we used label-free quantitation
based on spectral counting in more than 20 different plant studies; for instance
Gammulla et al. [92, 93] investigated the changes in the proteome of rice leaves and
cell cultures in response to high and low temperatures using a label-free based
spectral counting approach in two separate studies. In both studies, SDS-PAGE was
employed to fractionate proteins. Each lane was cut into 16 pieces, followed by
in-gel digestion and MS analysis by nanoflow liquid chromatography-tandem mass
spectrometry (nanoLC-MS/MS) using a linear ion-trap mass spectrometer. In
another study, the effect of thermal stress on cabernet sauvignon grape cells was
evaluated by a combination of Filter-aided sample preparation (FASP) digests and
spectral counting [94]. The same technique was applied to understand the molecular
mechanisms of water deficit stress in rice shoots [95, 96] and roots [26], and
mid-mature peanut seeds [97].

1.5 Post-translational Modifications
(PTMs)—Plant Proteomics

PTMs are known to play a key role in controlling the activity and function of a wide
range of proteins within a cell. Across both animal and plant kingdoms, we find a
grand diversity of post-translational modifications (PTMs). There are about 400
discrete types of PTMs which can occur in a cell [98]. Each of the modifications has
the potential to significantly alter the conformational space of the protein and
ultimately its function.

Mass spectrometry is considered the most suitable tool for identifying novel post
translational modifications, as no prior information about the modification sites and
type is essential [99].

Although the body of research into PTM function is growing, researchers have
only just scratched the surface on uncovering the importance of these modifications.
The most commonly studied PTM is phosphorylation—the ubiquitous on/off switch
responsible for developmental pathways associated with cell growth and in
response to stress factors. In addition, protein acetylation, methylation, ubiquiti-
nation, glycosylation and a whole host of niche modifications have been thoroughly
studied and catalogued [100-103]. Recent large-scale plant quantitative proteomics
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experiments have successfully linked many PTMs to a wide range of metabolic
functions and pathways operated during unfavourable conditions [104].

It is therefore important to have knowledge of what these modifications are, how
they affect protein structure and function, and how they can contribute to some
important downstream biological phenotypes. The aim of this chapter is not to list
in detail every example of where a certain type of modification exists, but to
provide an overview of the most common types of modifications occurring in plant
proteins, and highlight their importance in plant development and survival.

1.5.1 Phosphorylation

Phosphorylation remains the most widely recognised and studied PTM. Simply put,
phosphorylation is the addition of a phosphate group (PO%’), usually on the
hydroxyl group of threonine, tyrosine, histidine or serine residues, which increases
the molecular weight by 79.9663 Da [105]. An overwhelming number of
large-scale phospho-proteomics studies have been reported in rice, Arabidopsis,
Medicago, maize, and several other plant species, which were carefully discussed in
recent reviews [106—108].

Phosphorylation can be thought of as an on/off signal mechanism; proteins that
are phosphorylated have phosphate groups added to specific amino acids sites to
become ‘activated’. In reality, adding a phosphate group may have many different
consequences, and isn’t simply confined to turning proteins ‘on or off’. For
example, the addition of a phosphate group to a protein may provide it with a new
tertiary structure, conferring a new active site and thus a new function. In providing
new secondary or tertiary conformations for the protein, other important functions
such as protein-protein interactions may be promoted, or be interfered with or shut
down [109]. It is important to remember that phosphorylation also includes the
counter-process: the removal of phosphate groups. Phosphatases (removal) play just
as vital a role in protein function as protein kinases (addition), in situations where
the phosphate group regulates signalling mechanisms between proteins. Larger
scale biological processes are also dependant on kinase activity and phosphoryla-
tion and these include differentiation, cell maintenance, development and intra-
cellular regulation [110].

For the purpose of this overview, it is important to consider the impact of
phosphorylation in the plant research field. As we have established above, changes
to the protein at the phosphate level can impact cell growth and development due to
the switching on of various chemical pathways. In addition, phosphorylation also
plays a critical role in host-pathogen responses and can influence plant survival
[111]. Some examples of current phosphorylation-related research include the role
of phosphorylation in controlling mitochondrial related processes, especially related
to an enzyme responsible for acetyl-CoA processing within the TCA cycle [112];
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for cell wall elasticity and cell cycle regulation within Phaseolus vulgaris (common
bean) [113]; and for elucidating the relationship between classes of proteins such as
aquaporins in the water-moving capabilities of roots [114].

1.5.2 Acetylation

The post-translational acetylation of lysine residues on specific proteins is a func-
tional regulatory mechanism, which was only discovered relatively recently [115].
It is a topic of great research interest, because it seems to be universal in nature; it is
present across all the kingdoms of life [116, 117]. Plant proteins are known to be
subjected to acetylation and deacetylation by acetyltransferases and deacetylases,
which have been identified in the genome of various plant species. At least twelve
histone acetyltransferases (HAT) and eighteen histone deacetylases (HDAC) are
present in the Arabidopsis genome [118], while the rice genome contains 19 HDAC
genes and seven HAT genes [119]. Histone acetylation plays a significant role in
the regulation of cell cycle, development, flowering time, and hormone signal
transduction [120]. Despite the extensive studies on dynamic and reversible
changes in histone acetylation in histones, the extent of lysine acetylation in
non-histone proteins in plant cells is largely unknown.

A number of published studies in different species across the animal kingdoms
have shown that acetylation is an important regulatory mechanism [121]. Some of
the earliest relatively large scale studies of lysine acetylation were performed in
Arabidopsis: Konig et al. [122] reported the identification of 120 lysine acetylated
mitochondrial proteins, containing 243 distinct sites of acetylation, mainly on
proteins involved in protein metabolism and the tricarboxylic acid cycle;
Finkemeier et al. [100] published the identification of 91 acetylated sites on 74
proteins representing diverse functional classes; and Wu et al. [123] identified 64
lysine acetylation sites on 57 proteins and showed that lysine acetylation is an
important factor in the regulation of key metabolic enzymes. In the latter study, the
authors identified acetylated proteins including photosystem II (PSII) subunits,
light-harvesting chlorophyll a/b-binding proteins, RuBisCO large and small sub-
units, and chloroplastic ATP synthase (B-subunit) [123].

Similar studies have subsequently been reported in pea [124], soya bean [125],
grapevine [126], and rice [127]. All of these studies have shown that acetylated
proteins in plant cells are not limited to histones and seem to be involved in a
diverse range of metabolic control and energy-related functions, and found in a
diverse range of cellular compartments. However, the studies published so far have
analysed plant cells under ideal growing conditions; none of them have addressed
the question of how the acetylation status of the peptides and proteins changes in
response to the imposition of external stresses.

Complex regulatory networks control protein expression in all cells. The
chloroplast and mitochondria are known to be the main cellular hub for the con-
version of energy and redox homeostasis, in plant cells. Hence, control of protein
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functions in these important organelles is increasingly being found to be under-
pinned by reversible post-translational modifications like acetylation. It is known
that environmental stresses, as well as changes in cellular nutrient availability or
energy status, have a direct impact on global changes in mitochondrial protein
acetylation [128]. It has been reported that over one third of proteins in mito-
chondria are acetylated, of which the majority are associated with pathways such as
signal transduction, histone/chromatin gene expression, or protein turnover [129].
Therefore, investigation of protein acetylation has emerged as an important research
topic.

1.5.3 Methylation

Most scientists would be familiar with the notion of DNA methylation—that is, the
silencing of specific genes by the addition of methyl groups on CpG sites, thus
preventing transcription by structural interference with the major groove of DNA.
With the discovery of the arginine methyltransferase family of proteins, protein
methylation is now considered another form of PTM that warrants examination.
Methylation of key arginines within proteins, such as ribosome binding proteins,
has been shown to interfere with the intermolecular forces present within the
binding site, thus reducing protein-protein affinity [130]. Other key areas where
methylation of arginines has been shown to impact on protein function include
proteins responsible for transcriptional regulation, signal transduction and even
DNA repair [130, 131]. However, it is also important to note that methylation is not
limited to arginine residues and has been found on many other amino acid sites; but
again, the overall effect of these modifications change the electrostatic potential of
specific sites within the protein structure, which has downstream consequences for
pathway function.

Recent examples of methylation research include the localization of a methy-
lation enzyme responsible for regulation of a ribosomal protein to chloroplasts and
mitochondria [101]. There is also a recent push to characterize the processes by
which N-terminal modifications occur, as there is mounting evidence that even rare
N-terminals that end with Arg residues can be subject to protein methylation [132].
In fact, N-terminal modification is an area of research that could warrant an entire
review, given the functional importance and diversity of associated PTMs.

1.5.4 Ubiquitination

Ubiquitination is the process by which proteins are tagged for degradation. Protein
ubiquitination involves of the covalent and reversible binding, of a single ubiquitin
molecule or a number of ubiquitin molecules to Lys residues of the target protein
[133]. Ubiquitination. is carried out by addition of ubiquitin protein by a set of three
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enzymes the ubiquitin-activating enzyme—E]1, the ubiquitin-conjugating enzyme—
E2, and ubiquitin protein ligase—E3.

Ubiquitination is a well-observed process that spans both animal and plant
kingdom. Effectively, ubiquitin transferases mark misfolded or excess proteins with
an ubiquitin tag; ubiquinated structures are then read by the proteosome (a complex
multimer that acts a bit like a molecular grinder) and the tagged protein is degraded
into oligopeptide chains. New research, however, suggests that ubiquitination is not
solely for protein degradation and actually has a role in modulating biochemical
pathways [134]. In terms of the importance of ubiquitination, research groups have
linked this particular PTM with pathogen defense and development structures [135,
136]. This underscores an important point—that the major function of a PTM is not
the sole function, and ubiquitin is no exception, as highlighted by research showing
the implications of ubiquitin patterning for the life cycle and regulation of plant
cells [137]. As such, ubiquitination has been found to control subcellular processes
such as localization and cross talk [138]. Hence, this important PTM has a crucial
role in plant metabolism, growth and development, hormone signalling and stress
response to wide range of abiotic and biotic factors [139, 140].

Recent research on Arabidopsis thaliana has uncovered over three thousand
individual ubiquitination sites over sixteen hundred proteins [102]. Another pro-
teomics study showed that 950 ubiquitination substrates in whole Arabidopsis
thaliana seedlings were identified, using stringent two-step affinity methods for
purifying Ub-protein conjugates [141]. Ubiquitination is also being investigated for
its role in the regulation of complex biomolecular pathways, as a push from the
latter half of last decade saw a newfound interest in investigating alternative
ubiquitin roles [138, 142, 143].

1.5.5 Glycosylation

Protein glycosylation, however, is a different PTM class altogether. This is an
enormous field of study that is encompassed by the term glycomics, which is
complementary to metabolomics, proteomics and genomics. At its core, glycomics
refers to the study of sugar modification that exist on proteins, namely O- and
N-linked glycans, so named because of the different type of bond and hence amino
acid to which the glycan is attached. In order to study glycans or glycopeptide
structures, one must invest a considerable amount of time and effort as there exists
no easy automated approach to understanding the structures of sugar additions
based on mass spectrometry profiles. This is due to the nature of sugar branching
from amino acids—even if the constituent sugar modules can be singularly iden-
tified, there is as yet no method of automatic determination to reassemble these
monomers into accurate morphologies [144].

Sugar modifications often change the function of proteins in subtle ways; for
instance, surface membrane proteins coated in sugars act as intracellular commu-
nication_devices_that_can_recognise_self versus antigen molecules. It may be
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pertinent to mention that for intracellular protein modifications that use O-linked
glycans, the overall effect on protein function may be similar to that of phospho-
rylation [103, 145]. However, studying glycan patterns requires specific expertise,
in no small part due to the inherent difficulties in acquiring glycan samples from
peptides, and the manual annotation analysis that needs to take place to make sense
of any glycosylation results. A recent overview of cell wall glycoproteins outlines
the sparse discoveries for glycomics in Arabidopsis thaliana; current knowledge is
limited to an O-linked class of proteins in the cell wall, and a few N-linked glycans
responsible for regulation of peroxidases, a mannosidase and a polygalacturonase
inhibiting protein [146]. It is clear that glycomics lags behind other PTMs in plant
research, hence more research needs to done to reveal the importance of glycomics
in plant development and stress response studies.

1.5.6 PTMs Cross-Talk

The reversible nature of most PTMs makes some specific residues subject to
modification with alternate PTMs. In fact, a first PTM can initiate the occurrence of
the next PTMs. As a result the cross talk between PTMs occur on the same protein.
Broadly speaking, PTM cross talk can be broken down into two easy-to-understand
categories. First, positive cross talking occurs when the initial PTM make a con-
structive modification, such as the addition of another nearby PTM, or if the initial
PTM itself forms a new binding partner with another protein. Second, negative
cross talk can also occur; in this instance, the presence of a single PTM can
overcrowd the target site, change the conformation of the protein to stop other
PTMs from forming, or even disable or inconvenience the functioning of a
pre-established PTM [147]. Cross talk analysis is effectively the coalface of func-
tional analysis, as often the functional result of PTMs on these proteins or signals
come down to the interplay between different PTM types, which is influenced by
their location and numbers.

Although preparation of tissue samples for PTM analysis can be tedious and
costly, especially in the case of the phosphorylation or glycan studies, any solid
understanding of intracellular regulation in response to the environment or stress
factors must take PTMs into account. Having gone to the effort of preparing protein
samples for PTM analysis it also makes sense to conduct PTM studies in addition to
shotgun or bottom-up proteomics experiment to quantify the global protein changes
within the cell. Having these two pieces of information hand in hand provides a
rigorous and holistic picture of the cell’s response to the factor in question—the
large-scale changes of protein expression, or presence and absence of proteins,
informs us of the fundamental changes, while PTMs provide insight on how the cell
responds in a more subtle and nuanced sense. Sometimes, these two pieces of
information can overlap—in addition to fold changes, we see PTM to the proteins
of interest—but often the changes on the PTM level may come from proteins that
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are otherwise stable expression-wise but that alternate between two states. In this
sense, an alteration in expression level cannot tell us anything about PTMs and vice
versa.

1.6 Bioinformatics, Data Analysis Challenges
and Platforms in the Plant Proteomics Field

The quantitative protein identification strategies described above rely on matching
spectra to sequences from a database in order to generate the protein identification
and quantitation; as such it is crucial to have a good quality database. If the plant in
question is sequenced and well-characterized the choice is easy. For non-sequenced
plants, the options range from using a limited species-specific database, a related
sequenced and well annotated species, available EST databases, a comprehensive
database such as NCBI plants, or smaller composite databases containing sequences
from several related plants; the choices are well described in the context of plants in
a recent review [148]. The majority of the papers surveyed there used the com-
prehensive NCBI plant database; from the remaining options, from amongst the
several papers carrying out comparative experiments, no clear ‘winner’ option has
emerged, with some finding the well-annotated related species more advantageous,
others the species-specific [149] or EST option [150]. From work in our own group
on bioinformatics approaches available for wheat proteomic analyses [151], we
found a smaller size database from a closely related species to be more manageable
for multi-run iTRAQ experiments. We likewise emphasized the importance of
considering issues such as database redundancy and the implication on protein
grouping, as well as the availability of down-stream analysis options when
choosing the database.

Viewed from the plant biology standpoint the quantitative proteomics approa-
ches are not a goal in themselves but a means to arrive at a useful biological or
agricultural outcome. Therefore, a quantitative dataset generated by any of the
proteomic technologies described above is just the beginning. The aim is increas-
ingly not only placing the proteomic results in the context of biological information,
but also gaining understanding of the mechanism of a particular process, be it
drought response, signalling, or pathogen resistance. Here, we give an overview of
commonly used tools and strategies for bioinformatics analysis of plant proteomics
datasets. For selective reviews with a focus on bioinformatics resources available
for plants across several ‘Omics, platforms, see [152] and [153].

The broad outline of possible analysis steps is summarized in (Fig. 1.2), where
for clarity we structure the workflow in three layers: data, tools and annotation, and
results and interpretation. The particular details depend crucially of the type of
plant, availability of annotations, and thus resources at ones disposal. Following
experiment-specific statistical analysis, all the quantitative results have to be placed
in the context of available biological knowledge, such as pathways or biological
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Fig. 1.2 Schematic representation illustrating the plant proteomics data analysis workflow

functions. If the organism is a well-characterised plant such as Arabidopsis or rice,
then no further mapping of the protein identifiers is needed. If an organism has little
or no annotation available then mapping the identifiers to commonly used orthologs
such as Uniprot (http://www.uniprot.org/mapping/), or BLAST mapping to a
well-annotated species, may be a useful first step.

In the tools layer, the most convenient option is to use an analysis portal that
integrates functional or pathway data with some options for analysis, provided that
the plant species used is amongst those supported. KEGG remains a popular portal
[154] containing pathway information for approximately 50 plant species, with the
full list of supported organisms available at http://www.genome.jp/kegg/catalog/
org_list4.html. The KEGG Mapper gives the option to bulk map identifiers onto
pathway images, for a short list of available types of protein ID’s (KEGG, NCBI
and Uniprot); other identifiers could be first mapped to Uniprot as described above.
Alternatively, bioinformatics portals such as KOBAS [155] (http://kobas.cbi.pku.
edu.cn/home.do) integrate the KEGG database with other resources such as addi-
tional databases like PANTHER, and gene ontology (GO) information, from a total
of 1327 species. The AgriGO analysis platform [156] (http://bioinfo.cau.edu.cn/
agriGO/analysis.php) is a plant-specific resource that integrates gene ontology data
available at the moment for 45 plant species with six analyses options available, of
which parametric gene set analysis (PAGE) can be used to integrate the abundance
data from an experiment alongside the gene ontology information. The STRING
[L57] database and analysis portal has increased in popularity; while primarily used
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for visualisation of protein interactions, it also contains gene ontology and pathway
information that can be overlayed on the networks.

If the plant of interest is not amongst those directly supported by one of the
available analysis portals, or if a different type of analysis is required, then either
software or annotation can be installed or downloaded separately. Tools such as
Mapman for the analysis of pathway information [158], or Cytoscape (http://www.
cytoscape.org/) for the analysis of protein networks, have matured, and their
installation and use is now much more user-friendly. Mapman can integrate and
visualise experimental data, for instance across a time course, but coming from the
proteomics perspective it still requires downloading the right mappings from the
MapMan Store, and possibly blasting the protein identifiers to the available map-
ping identifiers; this can be done for instance via the Plant Expression Database
Blast resource (http://www.plexdb.org/). Cytoscape plugins such as BinGO [159]
and ClueGO [160] offer the option to view the gene ontology data in network form.
For organisms with very limited information available an option might be a gene
ontology information download, which can be explored using tools such as the
WEGO portal (http://wego.genomics.org.cn/cgi-bin/wego/index.pl) [161]. From
our own group, we use PloGO [162] for integrating GO data with protein abun-
dance data in the context of complex experiments. For commonly used protein
identifiers such as Ensembl or Uniprot, or when mappings to these identifiers can be
generated as previously described, tools such as the Ensembl Biomart or the
Uniprot retrieve/mapping service can be readily used to bulk-download gene
ontology information. When other identifiers are used, organism-specific resources
may provide other options. The TAIR Arabidopsis portal maintains a list of plant
model organism databases and resources, available at https://www.arabidopsis.org/
portals/genAnnotation/other_genomes/index.jsp.

The established tools described above are geared towards the analysis of lists of
proteins arising from proteomics experiments, but they are not directly applicable to
the analysis of post translational modifications. PTM analysis in plants, whilst
growing in popularity, is not yet mature [163], with data repositories emerging for a
limited number of well-studied plants, and limited options for analysis. Large
studies lead to identifications of PTM sites on peptides, which can be mapped onto
protein sequences that can then be categorized as above in terms of gene ontology
or pathway. One of the main roles of PTM experiments at this point is to accu-
mulate information to be fed back into data repositories [164]. In the realm of plant
studies, phosphorylation resources were established initially for several model
plants (PhosPhAt, Medicago PhosphoProtein database), and more recently P3DB
[165], currently containing phospho-site information for eight plants, but pre-
dominantly Arabidopsis, Medicago and rice.

While the variety of available software and resources is immense, the output of
the tools and annotation layer is usually a dataset with appended biological infor-
mation from various biological categories of interest. Making use of this infor-
mation can range from descriptive to mechanistic. At the descriptive end,
summaries of categories such as biological process or pathway and their visuali-
sation_can_be_provided for a_set of proteins, or compared between various sets.
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Enrichment analysis is described in detail in a recent review [166], and is embedded
into many of the tools and portals described above; broadly it compares annotation
from a protein set of interest to a baseline and suggests interesting processes or
pathways to further focus on. PTM analyses in plants are in part still descriptive at
this point, as information is being accumulated and stored, but can be coupled with
enrichment analysis to find processes that are, for example, enriched in phospho-
rylation sites, or to interrogate the conservation of PTM sites in orthologs [108],
across plant species. Also, targeted questions can be asked by focusing on PTM
sites on protein families of interest such as families conferring resistance against
pathogens [108]. Finally, analyses of protein networks and interactions are geared
towards exploring relationships between proteins with the aim of delivering
knowledge and a more mechanistic understanding.

1.7 Conclusions and Future Directions

Plant proteomics methodology has progressed rapidly, with numerous studies now
available characterising plant proteomes in great detail. A key success of such
studies has been the use of quantitative protein abundance information to shape
understanding of plant biological processes, particularly environmental stress
responses. With these successes and the advent of new high throughput and more
sensitive technologies, we expect to see an explosion in the near future in the use of
quantitative proteomic techniques addressing plant biology questions (Fig. 1.1).

Also apparent from this review of the literature is the fact that PTM analysis of
plant proteomes is still in its infancy. This is particularly true for glycoproteome
analysis which is at present a poorly understood and characterised PTM in plants,
especially compared with PTM analysis of proteomes from other branches of the
tree of life. Better methods to understand and characterise PTMs in plants are
needed, and the development of these methods should be a priority.

Finally, bioinformatic methods and databases specific to plants need to be better
described and utilised. It is clear that many databases and tools are adapted from
mammalian and bacterial analysis systems, and these may not be ideal for analysis
of plant proteomic data. In addition, there seems to be a gap in the literature
between what bioinformatics predicts from the data analysis of proteomic data, and
experimental verification of these predictions.
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Chapter 2
Seed Proteomics: An Overview
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Abstract Seed is vital for propagation of spermatophytes in biome and as food
source for inhabitants of the earth. Studies on seed proteins provide platform for
new avenues to explore molecular networks and pathways governing seed filling,
maturation, germination, and seedling formation. Protein expression changes of
three genetically different sub-regions of angiosperm seeds are reflected in ordered
chain of biological events represented from family differences in different taxas.
Different families of angiosperm show divergence of seed protein evolution and
thus provide insights into seed structure and function. A gamut of information is
available on seed proteomic datasets from approximately 3500 proteins that
impinge on protein function in diverse plant families. The functional modularity of
seed proteins were compared amongst species that span from dicot to moncot and
diploid to polyploid. Transitions of protein complement revealed difference
between dormancy and germination towards understanding biological check point
at translational level. Goal of this chapter is to critically review data available till
date on seed proteomic studies and identify family and cross genera knowledge
gaps. The information thus obtained would unravel new components and an
unparallel understanding of the molecular processes underlying translational and
post-translational variations under different conditions that involves histodifferen-
tiation and organogenesis of the seed.
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2.1 Introduction

Evolution of angiosperm has facilitated the transitional dominance of seed producing
plants into a terrestrial environment. According to the fossil records their first
appearance dated back to 365 million years ago when majority of landscape was
successfully and naturally selected for angiosperm survival [1]. The physiological and
genetic control of seed is in part responsible for dispersal mechanism which proved to
be a spectacular phenomenon responsible for prevalence of seed plants on livable
planet, the earth. True seed is fertilized mature ovule possessing an embryonic plant,
stored food, and a protective coat. A major factor during angiosperm embryogenesis is
the switch from the radial symmetry of the globular embryo to the bilateral symmetry
followed by differentiation of cotyledons and embryonal axis [2]. Seed development
and germination is a continuous and fine-tuned process with natural circumscription
engrossing three phases of embryogenesis recognized as rapid cell division, deposi-
tion of reserves, and desiccation. Commonly, mature seeds are classified as albu-
minous and ex-albuminous depending on the presence or absence of endosperm.
Earlier in 1946, Martin studied the internal morphology of seeds belonging to 1287
genera of angiosperm and classified them based on size of the embryo in relation to
endosperm and differences in the size, shape, and position of embryo in the seed. The
developmental program of monocot and dicot embryogenesis is different but a highly
ordered phenomenon. In addition, regulatory pathways, dissection of complex traits,
and developmental reprogramming reflects the fundamental differences of the
molecular biology of two taxas.

To build new perspectives approach for the physiological and biochemical factors
controlling seed traits in two taxas, omics studies of seed development were per-
formed since year 2000 exploiting the availability of genome sequence and related
resources [3]. Further, advancement in high-throughput proteome analysis using gel
and non-gel based approaches provided detailed protein profile at different develop-
mental stages which might help to elucidate the regulatory network of embryogenesis
related proteins. Currently, proteomics is playing an important role in: (i) under-
standing plant biology, (ii) developing plant biomarkers for human health and food
security and (iii) food analysis and bio-safety issues [4]. Seed proteomics research has
largely focused on agriculturally important crop plants. Typically, these seeds are
obtained from a commercial source. Itis reasonable to assume that they are genetically
uniform thus it is not biased by the contributions of a “‘contaminating” proteome. The
strategy of using combinatorial-ligand random peptide beads appears to have sub-
stantial potential to deplete the supra-abundant SSP from input samples [5]. In
addition, proteomic approaches also dissected double fertilization reprogramming at
translational and post-translational level in two different clades of angiosperm. This
review aims to compile proteomic analyses performed until now to understand evo-
lution of monocot and dicot seed protein patterning, analyzing protein profile of
inaccessible regions of seeds, regulatory networks of underlying mechanism of
embryogenesis and filling to modulate and outline the strategies to identify candidate
seed proteins controlling the regulatory switches.
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2.2 Perspect of Seed Biology

Seed is a multifaceted organ which develops from fertilized ovule and is important
for plant survival, evolution and agricultural production. Strictly defined, seed
development is accompanied with many distinct metabolic, cellular and physio-
logical changes including imbibition, respiration, RNA and protein synthesis,
enzyme activities within its surviving structures like endosperm, nucellus, cotyle-
don, teguments and components including funiculus and integument. Seed biology
research has been conducted extensively due to its importance in food industry.
Seeds of different genera and family of angiosperm have diverse importance being
used for oil, spices, fibre, carbohydrate, fat, secondary metabolites and in brewing
industry. They ensure the perpetuation of life forms and spread of the species to
new areas by means of autochory, anemochory, hydrochory, and zoochory [6].
Distinct physio-chemical properties of diverse angiosperm seeds compelled the
researchers to study their molecular entities including protein complement to
understand cellular circuitry correlated to the morphological and physiological
adaptations from germination to seedling growth.

2.3 Protein Organization of Seed Parts

In angiosperm, the female gametophyte is seated deep in the ovarian cavity far
away from stigma where pollen germinates. There is sufficient evidence to suggest
that gametophyte specific proteins were present during fertilization phase [7].
Further, the triploid endosperm, the most common nutritive tissue for the devel-
oping seed in angiosperm, maintains a critical protein balance with embryo and
maternal tissues. Nuclear, helobial and cellular endosperm shows either symmetric
or asymmetric growth that is exemplified by differences in protein patterns [8]. He
et al. [9] performed comparative proteomic analysis of wheat embryo and endo-
sperm during seed germination. The most abundant proteins both in the embryo and
endosperm were found to be seed storage proteins such as legumins, vicilins and
albumins. Housekeeping enzymes, actin-binding profilin, defense-related protein
kinases, nonspecific lipid transfer protein and proteins involved in general meta-
bolism were also identified. In monocot, morphologically and biochemically dis-
tinct outermost layer of endosperm namely aleurone exhibit differences in protein
organization and constitutes an important accumulatory reserve tissue. Following a
predetermined mode of development, fertilized egg give rise to embryo which show
differences in morphology, anatomy and biochemistry both in monocot and dicots,
and protein composition is no exception. Proteomic studies had begun to reveal
proteins that are necessary for the events such as pattern formation, cell differen-
tiation and organ development. Up till now approximately 1500 diverse proteins are
reported to be active in dicot plants and 928 proteins in monocot plants (Table 2.1).
Many of these are expressed in specific cell types and regions of seeds. For modular
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Table 2.1 A comprehensive list of angiosperm seed proteome study
Clade Family Plant Organ/tissue References”
Dicot Brassicaceae Arabidopsis Whole seed [25]
Whole seed [23]
Whole seed [19]
Whole seed [21]
Whole seed [27]
Whole seed [26]
Whole seed [22]
Whole seed [17]
Whole seed [18]
Camelina Whole seed [48]
Castor bean Nucellus [45]
Whole seed [44]
Whole seed [42]
‘Whole seed [46]
Mustard ‘Whole seed [30]
Whole seed [49]
Oilseed rape Embryo [35]
Rapeseed Cotyledon [31]
Endosperm [34]
Whole seed [28]
Whole seed [33]
‘Whole seed [32]
Whole seed [47]
Whole seed [29]
Rapeseed, Whole seed [43]
arabidopsis
Euphorbiaceae | Jatropha Embryo and endosperm [36]
Embryo, endosperm [37]
Endosperm [41]
Inner integument [39]
Whole seed [40]
‘Whole seed [38]
Leguminoceae | Chickpea Whole seed [80]
Common Whole seed [78]
bean
Lentil Whole seed [79]
Cotyledons, hypocotyl [73]
Endosperm, [74]
Whole seed [71]
Whole seed [72]

(continued)
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Table 2.1 (continued)
Clade Family Plant Organ/tissue References”
Medicago Whole seed [68]
Whole seed [66]
Whole seed [69]
Medicago, Whole seed [70]
black bean
Mungbean Whole seed [81]
Pea Embryonic axis [57]
Whole seed [75]
‘Whole seed [76]
Peanut ‘Whole seed [82]
Whole seed and testa [83]
Pigeon pea Whole seed [84]
Soybean Cotyledon [64]
Cotyledon [63]
Hypocotyl, radicle [65]
Seed coat [13]
Seed coat [12]
Whole seed [51]
Whole seed [52]
Whole seed [5]
‘Whole seed [60]
Whole seed [61]
Whole seed [58]
Whole seed [62]
Whole seed [59]
Whole seed [57]
Whole seed [56]
‘Whole seed [55]
‘Whole seed [54]
Whole seed [53]
Whole seed [59]
Amaranthceae Sugarbeet ‘Whole seed [85]
Anacardiaceae Cashew Cotyledon [86]
Cucurbitaceae Melon Whole seed [89]
Oleaceae Olive Whole seed [90]
Rosaceae Cherry Cotyledons, embryos, testae [88]
Rubiaceae Coffee Embryo [92]
Solanaceae Tomato Embryo, endosperm [87]
Theaceae Tea Whole seed [93]
Vitaceae Grape Endosperm [91]

(continued)
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Table 2.1 (continued)

Clade Family Plant Organ/tissue References”
Monocot Poaceae Barley Aleurone [150]
Aleurone, endosperm, [144]
embryo, whole Seed
Endosperm [143]
Whole seed [154]
Whole seed [147]
Whole seed [142]
Whole seed [145]
‘Whole seed [148]
‘Whole seed [149]
Whole seed [146]
Whole seed [152]
Whole seed [151]
Whole seed [153]
Maize Embryo [122]
Embryo [135]
Embryo [134]
Embryo [133]
Embryo [132]
Embryo, endosperm [139]
Embryo, endosperm [140]
Embryo, endosperm [102]
Endosperm [138]
Scutellum [136]
‘Whole seed [137]
Rice Embryo [114]
Embryo [115]
Embryo [116]
Embryo [109]
Embryo [108]
Embryo [107]
Embryo [106]
Endosperm [110]
Endosperm [111]
Endosperm [113]
‘Whole seed [105]
Whole seed [104]
Whole seed [57]
Whole seed [101]
Whole seed [100]

(continued)
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Table 2.1 (continued)

Clade Family Plant Organ/tissue References®

Whole seed [99]
Whole seed [97]
Whole seed [103]

Wheat Amyloplast [128]
Amyloplast [127]
Endosperm [125]
Endosperm [130]
Endosperm [129]
Endosperm [126]
Endosperm [131]
Whole seed [124]
Whole seed [119]
Whole seed [120]
Whole seed [118]
Whole seed [117]
Whole seed, embryo [123]

“Based on PubMed search dated November 5, 2015

organization of seeds belonging to different clades of angiosperm, expression of
proteins unique to each autonomous region must be regulated at both translational
and post-translational level. During development or maturation it is typical to
analyze whole seeds as the seed coats and embryonic axes make a relatively small
contribution to the total mass [10]. Besides acting as a physical barrier, the seed
coat has other multifunctional roles majorly in the metabolic control of seed
development and dormancy, disease resistance and in nutrient metabolism from
parent plant [11, 12]. In case of soybean seed coat, shotgun proteomic approach was
used to identify 1372 seed coat proteins majorly involved in primary and secondary
metabolism, cellular structure, stress responses, nucleic acid metabolism, protein
synthesis, folding and targeting, hormone synthesis, signaling, and biogenesis of
seed storage proteins (SSPs) [13].

2.4 Prototype Extraction of Seed Proteins

Being a sink organ, seeds of angiosperm have reserves of carbohydrate, fat, protein,
oil, secondary metabolites, organic acids and cyclic compounds, which make the
extraction of protein a daunting task. Total protein content in different angiosperm
families vary and show differences in stability, activity and selectivity. Seeds were
subjected to protein profiling much before the concept of proteome had emerged.
Most of the seed proteomic studies have been carried out using differential
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biochemical extraction method for fractionation followed by resolution utilizing
two dimensional gel electrophoresis (2-DE). Study of seed proteins dates back for
over 270 years with the isolation of wheat gluten in 1745 by Beccari. Thereafter,
systematic studies on seed proteins were carried out by Osborne in 1924 who
classified seed proteins based on their solubility and extraction in a series of solvent,
for example, water soluble (albumins), dilute saline soluble (globulins), alcohol
soluble (prolamins) and dilute acid or alkali soluble (glutelins). More systematic
seed protein extraction was carried out in 1965 that focused on the salt soluble seed
proteins from pumkin by extraction through column gradient [14]. Subsequently,
seed protein extraction was performed utilizing weak buffer at neutral pH and low
ionic strength by Kriz [15]. These conditions were found to enrich low abundant
proteins, which are otherwise masked by the presence of high abundant storage
proteins. Furthermore, Kreis et al. in 1985 reported extraction of proteins in only
deionised water. Improvement in the fractionation procedure underlined of seed
sub-regions namely, embryo, endosperm, aleurone, scutellum, cotyledons involved
dedicated extraction methods like tris-phenol, acid or alkaline extraction, two-phase
separation and urea solubilization [10]. Organellar proteomes from seeds are very
less studied due to unavailability of sufficient material.

2.5 Seed Proteomes: A Composite Insight

2.5.1 Seed Proteomics of Angiosperm

Evolutionary relationship between monocot and dicot seeds is an outcome of
protein diversity that could be interpreted from the translational landscape obtained
from proteomic approaches. Protein signatures in seeds of diverse taxas provide an
integrated view based on molecular characteristics. Sub-regions of seed reveal
similarities and differences in biological processes among different taxas depicting
common themes in diverse genera. Unraveling the molecular basis of embryoge-
nesis in angiosperm at protein level has laid a foundation for the rational
improvement of agricultural production. Seed sub-regions have features that appear
to be common in angiosperm, including conserved systems for deploying devel-
opmentally related proteins and storage strategies [16]. Studies on the mechanism
of embryogenesis have revealed how different sub-regions of seed have mimicked
fundamental strategies for protein communication in angiosperms. Buildup of
precursor metabolites, rapid endoreduplication, growth of pod, testa and endosperm
leading to increase in storage protein synthesis and cell division suggests that
conserved developmental events exist among angiosperm, although difference lie at
molecular, anatomical and physiological levels. These findings highlight the utility
of the cross-taxa comparison of seed proteomes for rigorous dissection of funda-
mental components of seed developmental machinery (Fig. 2.1).
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2.6 Assessment of Seed Sub-region Proteomes of Eudicot

2.6.1 Brassicaceae Seed Proteomics: Sub-region Protein
Functions

In total, twenty-eight seed proteomes have been reported till date encompassing
twenty-four whole seed, one each on nucellus, embryo, endosperm and cotyledon
(Table 2.1). Brassicaceae is one of the most assorted angiosperm families whose
seeds have varied economic importance. The relationship between most of the
allied genera is of importance to understand regulatory responses of seed devel-
opment among family members (Fig. 2.1).

The seed proteome collinearity of several species of Brassicaceae was compared
and three major conclusions emerged. First, more than 2000 proteins, about 800
phosphoproteins, and 200 phosphopeptides were identified in Arabidopsis whole seed
proteome pointing towards metabolite fluxes restructuring, polar transport of hor-
mones, proteins related to growth and development, desiccation tolerance, germina-
tion, dormancy release, vigor alteration and responses to environmental factors. These
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reports greatly expands knowledge about Brassicaceae seed biology [17-27].
Secondly, around 700 proteins from whole seed, 930 proteins from endosperm and 37
proteins from cotyledons were identified from Brassica napus [28-33]. These studies
depicted that proteins involved in genetic information processing, carbohydrate
metabolism, environmental information processing, energy metabolism, cellular
processes and amino acid metabolism were predominant. In endosperm proteome,
proteins involved in sugar conversion and recycling, ascorbate metabolism, amino
acid biosynthesis and redox balancing were detected confirming the fact that
metabolite reallocation and reformation is the major functionality of endosperm
during development [34]. Implications of the seed filling process and the function of
the embryo were also elaborated in one of the study, where proteins involved in
organogenesis, embryogenesis and development were identified [35]. Furthermore, in
another study on Brassica campestris seed development led to the identification of
260 proteins involved in oxidation/detoxification, energy, defense, transcription,
protein synthesis, transport, cell structure, signal transduction, secondary metabolism,
transposition, DNA repair and storage [30]. Altogether, these studies revealed con-
served protein complexes, processes and functionality amongst the studied species.
Nonetheless, diversity lies in signaling and developmental strategies displaying
morphological, anatomical, physiological and biochemical variations.

2.6.2 Euphorbiaceae Seed Proteomics: Shared and Distinct
Proteins

The modus operandi in investigating the seed sub-region proteomes of
Euphorbiaceae species was the availability of relevant proteomic studies conducted
till date. The outcome suggested that 187 whole seed proteins, approximately 5000
endosperm associated proteins, 28 embryo specific and about 3000 integument
derived proteins were detected using gel and non-gel based approaches from
Jatropha curcas (Table 2.1) [36—41]. Data showed that majority of proteins were
unique while some housekeeping proteins were common to specific sub-regions.
The identified proteins revealed the predominance of protein inhibitor, metabolism,
ROS regulated, transport, development and protein degradation related proteins.
The creation of prognostic protein modules were used to identify specific regulators
operating in the developmental circuitry responsible for coordinating biological
processes. Seeds of Jatropha are prospective resource of biodiesel generation. Seed
proteomic studies would laid a foundation to understand basic information on the
biosynthetic pathways associated with synthesis of toxic diterpenes, fatty acids and
triacylglycerols and deposition of storage proteins during seed development. These
studies provide an important glimpse into the enzymatic machinery devoted to the
production of carbon (C) and nitrogen (N) sources to sustain seed development and
quality. Another family member, Ricinus communis was explored for its seed
protein dynamics wherein around 2700 proteins from whole seed and 766 proteins
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from nucellus were identified those involved mainly in fatty acid and amino acid
metabolism [35, 42-49].

2.6.3 Leguminosae Seed Proteomics: Common
and Contrasting Facets

Renovating Leguminosae family for seed proteomic studies proved to be a
descriptive and distinct approach for many agriculturally important legumes
including pea, Medicago, soybean, mungbean, peanut, Lens, chickpea, common
bean and Lotus. Till date, thirty nine seed proteomic studies comprising of whole
seed, cotyledons, embryonic axis and endosperm were conducted on legume spe-
cies to shed light on the mechanism that regulates seed development, morpho-
genesis and embryogenesis (Table 2.1). Proteomic studies on soybean seed
identified 2472 whole seed proteins involved in nitrogen, carbon and lipid meta-
bolism [50-62]. Also, 472 seed coat proteins identified from soybean showed that
cell wall associated bioenergetic pathways were integrated with carbon anabolism
and catabolism of fatty acids which might contribute to seed coat formation
[12, 13]. Further, 328 cotyledon proteins were identified from different cultivars of
soybean those associated with oxidative modification of distinct seed-stored
mRNAs having role in oxidative phosphorylation, ribosome biogenesis and nutrient
reservoir suggesting the significance of post-transcriptional repression of these
biological processes regulating seed dormancy [63-65]. Collectively, soybean
datasets provide evidence that several regulatory pathways encompassing meta-
bolic, signal transduction and transport related protein contribute to the seed
embryogenesis. Cataloging of seed proteins in another agriculturally important crop
of the same family, Medicago revealed an imperative corollary, which shows that
overall studies until now have been conducted only on whole seed that led to the
identification of 308 proteins [66—70]. To comprehend further, Lotus seed pro-
teomic studies when analysed showed the presence of 1500 proteins and 343
phosphoproteins predominantly involved in metabolism and signal transduction
forming a regulatory hub that might be controlled by feedback loops [71-74]. Pea
seed proteomics spotlight total repertoire of accumulatory and storage proteins from
seed sub-regions. It is apparent that primary metabolism, secondary metabolic
processes and ROS associated pathways are activated during seed development
[75-77]. Unlike soybean, Medicago, Lotus and pea, seed proteomes in chickpea,
common bean, Lens, mungbean and peanut are less studied [78-84]. Metabolic
pathways were found to be distinct in subfamilies of legumes. Therefore, decoding
seed proteome dynamics in less explored legumes are of utmost importance to
understand diversity among the protein complement in this family.
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2.6.4 Seed Proteomics of Less Studied Plant Families:
A Way Forward

To explore less studied plant families, a defined scheme of seed proteome research
were adapted that illustrate some protein variants were functionally and structurally
modular and involved in developmental processes. Seed specific proteomes of
cashew (Anacardiaceae), sugarbeet (Amaranthaceae), coffee (Rubiaceae), grape
(Vitaceae), flax, tomato and potato (Solanaceae), Prunus (Rosaceae) and melon
(Cucurbitaceae) involving climacteric and non-climacteric fruits of economic
importance have been reported (Table 2.1) [85, 86]. In total seed proteomic studies
of climacteric fruit tomato (788 proteins from embryo and endosperm), Prunus
(1266 proteins from cotyledon, embryo, and testae), and melon (3 peptides from
seed) identified an array of proteins associated with ripening, cell wall strength-
ening, organ development, storage reserve accumulation and embryogenesis [87—
89]. Seed proteins from non-climacteric fruits namely grape (3 proteins from
endosperm) and olive (231 proteins from seed) were mostly involved in seed for-
mation and development [90, 91] comprising ascorbate peroxidase, amylase, malate
dehydrogenase and triose phosphate isomerase. In contrary, seed proteomic studies
from plants used for beverages viz., coffee (10 proteins from embryo) and tea (34
proteins from whole seeds) showed the presence of high levels of ROS related
proteins that might alter the redox status and determine seed viability [92, 93]. Till
date three reports have been published on flax seed proteomes that identified 1744
proteins involved in reorganization of seed cellular machinery during development
promoting primary and secondary metabolites reallocation. In addition, oxidative
homeostasis, photosynthesis, fruit quality, embryogenesis and development related
proteins were also reported in flax seed proteome (Table 2.1) [94-96].

2.7 Assessment of Monocot Seed Proteomes

2.7.1 Grain Seed Proteomics: Overlapping and Unique
Proteins

To address key protein complement of monocot seeds, Poaceae family which
represents the most extensively investigated members have been used for assessing
grain proteome. Of the total 53 proteomic studies on seed sub-regions, rice and
wheat having twenty and seventeen reports formed the predominantly studied
members whereas fifteen and eleven reports were from barley and maize, respec-
tively (Table 2.1). When rice seed proteomes were explored, twenty one proteomic
studies including whole seed (ten reports), embryo (three reports) and endosperm
(eight reports) revealed reorganization of protein pool during various develop-
mental stages. 2186 differentially expressed whole seed proteins were found to be
involved in central metabolic or regulatory pathways, including carbohydrate
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metabolism (especially cell wall synthesis) and protein synthesis, folding and
degradation. These provide proteomic confirmation of the notion that seed forma-
tion and development involves diverse but delicately regulated pathways [97-105].
Our inclusive analysis of endosperm (408 proteins) and embryo (1656 proteins)
proteomics of rice, a valuable proteomic resource highlight characterization of
pathways contributing to organ development and embryogenesis at molecular and
biochemical levels [106—-116]. Phosphorylation, a well-studied post-translational
modification is fundamental in the signal transduction cascades during histodif-
ferentiation and embryogenesis. We observed that till date only one report illus-
trates the role of phosphorylation in embryo formation in rice. The study identified
168 phosphoproteins elucidating the involvement of biomolecular signaling and
hormonal interplay during cell division, differentiation and delineation of rice
embryo. A glance at wheat seed proteomics yielded a total of 2327 whole seed
proteins from ten separate studies (Table 2.1) [3, 46, 117-124]. Wheat seed
sub-region proteome have identified 2789 endosperm specific proteins and 63
embryo related proteins [9, 125-131]. Investigating functional and regulatory
context of wheat seed proteome research paved the way to understand sink tissue
biology of a polyploid crop. Data showed that differentially expressed proteins from
embryo were mainly related to carbohydrate metabolism, amino acid metabolism,
nucleic acid metabolism and stress-related proteins; whereas those from the endo-
sperm were mainly involved in protein storage, carbohydrate metabolism, protein
inhibitors, stress response, and protein synthesis. Translational changes of wheat
whole seed display distinct differentially expressed proteins and their synergistic
expression provide a mechanistic basis for the normal germination of wheat seeds.
Analysis of maize seed proteomes yielded eleven reports including whole seed (one
report), embryo (five reports), embryo and endosperm (three reports), endosperm
(one report) and scutellum (one report) till date (Table 2.1) [102, 122, 132-140].
Furthermore, 2809 embryo associated proteins involved in organ development,
transportation, amino acid metabolism, defense response, molecular chaperone
function, protein synthesis, proteolysis, secondary metabolism and signal transduc-
tion have been catalogued using gel and non-gel based proteome analysis.
Additionally, 183 endosperm related proteins were identified involved in storage, C
and N recycling and biogenesis. Molecular basis of seed development of maize was
elucidated from whole seed proteotypes that resolved 4511 proteins. Proteins
involved in turgor pressure generation, energy metabolism, secondary metabolism,
protein synthesis and oxidative burst were identified in different maize genotypes.
Further, fifteen seed proteomic studies of barley has identified 423 proteins from
whole seed associated with photosynthesis and energy metabolism, carbohydrate
metabolism, protein degradation and defense (Table 2.1). Also, 168 proteins from
aleurone, embryo and endosperm belongs to diverse functional categories such as
metabolite allocation, carbohydrate metabolism, amino acid metabolism, defense
response, protein folding and stabilization and oxidative stress tolerance [141-154].
A vast array of monocot seed proteins add diversity to the seed biological proper-
ties leading to exclusivity and specificity in cellular processes. Therefore,
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characterization of the seed sub-region proteome holds promise of increasing
understanding about the regulation of genes and their function in diverse monocot
genera.

2.8 Conclusion

Protein expression of recalcitrant or orthodox seed and climacteric or
non-climacteric seed belonging to diverse families of angiosperm revealed that the
enzymatic machinery initiate germination during the maturation phase is a common
theme. The extent to which the functionally active translational machinery would
synthesize protein at different stages of seed development differs between different
family, genera and species. Protein content and profiles of the seed tissues
(cotyledon, embryonic axis and endosperm) were reasonably diverse in different
families. The embryonic axis showed proteins related to cell division, histodiffer-
entiation, organogenesis and embryogenesis. Majority of endosperm related pro-
teins, being classified according to their function into major group primarily
involved in macronutrient metabolism, metabolite accumulation and assimilation.
Cotyledon showed higher number of metabolic and storage related proteins com-
pared to embryonic axis. The tegument, aleurone, nucellus and scutellum presented
the largest number of the transport, signaling and cytoskeleton proteins. Protein
patterning is in agreement with the biological role of the tissues. Studies on seed
tissue and sub-region proteome confirmed a compartmentalization of biological
pathways and a partition of metabolic fluxes between different regions of seed. This
partition and compartmentalization uncovered the divergence and particularities of
the seeds from different families.
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Chapter 3

Fruit Development and Ripening:
Proteomic as an Approach to Study
Olea europaea and Other Non-model
Organisms

Linda Bianco and Gaetano Perrotta

Abstract Boosted by the development of cutting-edge “omics” technologies,
powerful tools have been developed to support traditional fruit crop research.
Comparative “omics” studies have been extensively applied to investigate complex
biological processes, such as fruit development and ripening, pointing out unique
pathways, genes and proteins involved in these processes. Due to the availability of
new technologies, reduced experimental costs, and optimized protein extraction
protocols for recalcitrant plant tissues, proteomics is rapidly expanding, reaching
fruit species regarded as non-model plant systems. Olea europaea can be
undoubtedly ranked as a non-model plant species, thus suffering from a dearth of
proteomic investigation when compared to other fruit species. In this chapter, we
will briefly travel through the proteomic history of olives as an example of a
non-model tree crop, characterized by a proteomic investigation still in its infancy
but appearing to be promising. We will highlight what has been already done and
we will draw the attention of the reader especially on what can be still done.

Keywords Fruit - Olea europaea - Non-model organisms

3.1 Introduction

The consumption of fruit is an important part of a healthy diet as it has been
associated with a reduced risk of developing degenerative diseases, like cancer and
cardiovascular diseases. Fresh fruits are in fact characterized by high levels of
relevant nutrients, such vitamins, fibres, minerals, and anti-oxidant compounds,
including polyphenolic flavonoids, vitamin-C, and anthocyanins.

Nutritional and sensory qualities of fruits are largely determined by the catabolic
and anabolic processes taking place during fruit development and ripening. The
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developmental process requires biochemical pathways that are unique to plants and
may vary between species. In fleshy fruit, it involves three distinct stages, namely
fruit set, fruit development and fruit ripening. During the first phases, very active
cell division promotes fruit growth, followed by fruit enlargement due to consid-
erable cell expansion, driven by cell wall extension as well as synthesis of new cell
wall material. Ripening initiates after fruit development, when seed maturation has
been completed; it is characterized by deep metabolic alterations in biochemistry,
physiology and gene expression of the fruit, leading to changes in colour, texture,
aroma and nutritional qualities [1].

The transition from immature to mature stage occur when fruits acquire their final
colour, edible traits and organoleptic quality through a progression of events accom-
panied by an intense metabolism. As a matter of fact, chlorophyll is progressively
degraded and the photosynthetic apparatus is dismantled; new pigments start being
synthetized as well as different types of anthocyanins and carotenoids, such as
B-carotene, xanthophyll esters, xanthophylles, and lycopene. Complex mixtures of
volatile organic compounds are produced, whereas bitter substances, such as flavo-
noids, tannins and related compounds, are hydrolysed [2]. Fruit taste is shaped by an
increase in sweetness, due to augmented gluconeogenesis, hydrolysis of polysaccha-
rides, especially starch, and a parallel decrease in acidity. Changes in texture also occur,
leading to a gradual loss of firmness. Fruit softening is a developmentally programmed
process that requires a large number of hydrolytic enzymes, synergistically working to
disassembly the cell wall. Tissue softening is strictly related to an increased fruit sus-
ceptibility to pathogens; in addition, it is responsible for the reduced tolerance to
mechanical damage that might quickly render the fruit unmarketable. At the late stages
of ripening, some senescence-related physiological changes also take place, leading to
membrane deterioration and initiating programmed cell death.

According to the regulatory mechanisms underlying their ripening process, fruits
can be broadly classified in climacteric and non-climacteric. Climacteric fruits, such
as tomatoes, apples and pears are characterised by an increased ethylene production
and a rise in cellular respiration. By contrast, non-climacteric fruits, such as straw-
berry, olives and oranges, show no dramatic changes and ethylene production remains
at a very low level. Interestingly, this physiological behaviour is not related to tax-
onomy. Species belonging to the same family can display divergent responses to
ethylene. For example, tomato and pepper belonging to Solanaceae, are classified as
climacteric and non-climacteric, respectively. Although ethylene plays a pivotal role
in climacteric fruit ripening, both ethylene-dependent and ethylene-independent gene
regulation pathways coexist to coordinate this process [3]. The cross-talk between
ethylene and auxin represents, in fact, a critical point in this regulatory network [4].

The complexity of ethylene action during ripening is confirmed by the activation
of multiple receptors and signal transduction components. The presence of several
active ethylene receptors has been demonstrated even in non-climacteric fruits,
where ethylene seems to play a regulatory function, dependent on the interaction
with abscissic acid (ABA).

Overall, fruit development is a very complex phenomenon, which displays deep
biochemical and physiological changes. in response to different hormonal inputs. In
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addition to ethylene, auxin, and ABA, significant involvement has also been pro-
posed for jasmonates and brassinosteroids in climacteric [5] and non-climacteric
fruits [6], respectively. All the hormone categories seem to be directly or indirectly
involved in the ripening of climacteric and non-climacteric fruits, supporting the
hypothesis of a model common for both fruit classifications [7].

As a general consideration, the developmental program is under strict genetic
control and driven by the coordinated expression of fruit-related genes, coding for
enzymes directly involved in biochemical and physiological changes as well as for
regulatory proteins participating in signalling and transcriptional machineries. All
these biochemical and physiological events are influenced by several environmental
conditions, as well.

Comparative “omics” studies have been extensively applied to study complex
biological processes, such as fruit development and ripening, pointing out unique
pathways, genes and proteins involved in this process [8]. An important number of
data are nowadays available from large-scale analysis of gene expression during
climacteric and non-climacteric fruit development. In recent years, triggered by
NGS revolution, comparative proteomics has become increasingly attractive to
plant biologists as the avalanche of genomic information provided new opportu-
nities for protein identification and functionality [9]. It represents an extremely
informative approach, examining gene expression end products: the proteins. As a
matter of fact, a possible divergence between messenger (transcript) and its final
effector (mature protein) can occur. As most biological functions in a cell are
executed by proteins rather than by mRNA, transcript expression profiling provides
partial information for the description of a biological system, such as fruit devel-
opment and ripening. Several post-transcriptional and post-translational control
mechanisms such as the translation rate, the half-lives of mRNAs and proteins,
protein modifications and intercellular protein trafficking, have an important
influence on the phenotype [10]. Due to the availability of new technologies,
reduced experimental costs, and optimized protein extraction protocols for recal-
citrant plant tissues, proteomics is rapidly expanding, reaching fruit species
regarded as non-model plant systems [10, 11]. Up until some years ago, only very
few data on fruit development proteomics were available [12]; nowadays papers on
this tricky topic are progressively increasing. We can think about papaya, banana,
mango, avogado, and apricot proteomics [9, 11]. Overall, they show a great effort to
understand the molecular mechanisms affecting the development and ripening in a
large variety of fruits, based on the hypothesis that proteomic-driven knowledge can
effectively help to improve their quality traits.

3.2 Olive Drupe Proteomics: A History to Be Completed

Fruit proteomics is a relevant as well as complex and arduous research tool; it
represents one of the major challenges, especially when applied to orphan, unse-
quenced and non-model organisms. The power of all proteomic methods tends to be
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lost in non-model species due to the lack of genomic information, the complexity of
the genome (protein inference problem) or due to the sequence divergence to a
related sequenced reference variety or to a related model organism [13].

To date, a very limited number of papers have dealt with olive fruit proteome.
Due to its particular size and long generation time, Olea europaea can be
undoubtedly ranked as a non-model plant species, thus suffering from a dearth of
proteomic investigation when compared to the grass and major horticultural crops,
like tomato, citrus or grape, or even to other non-model organisms, the afore-
mentioned papaya, banana, mango, avogado tree crops.

In this chapter, we will briefly travel through the proteomic history of olives as
an example of a non-model tree crop, characterized by a proteomic investigation
still in its infancy but appearing to be promising. We will highlight what has been
already done and we will draw the attention of the reader especially on what can be
still done.

Olea europaea is one of the most economically relevant tree crops in the
Mediterranean basin. Olive fruits, classified as drupes, can be directly consumed as
table olives or subjected to mechanical extraction of oil. Olive oil is a predominant
component of the so-called “Mediterranean diet”, worldwide known for its bene-
ficial effects on human health; its consumption has been associated to a reduced risk
of cardiovascular diseases and cancer [14]. Olive oil is particularly enriched in the
monounsaturated fatty acid oleate (18:1), reaching percentages up to 75-80 % of
total fatty acids, followed by linoleate (C18:2), palmitate (C16:0), stearate (C18:0)
and linolenate (C18:3). The final acyl composition enormously varies throughout
olive fruit development, according to genotype and environmental conditions.
Drupe mesocarp can accumulate important metabolites, including polyphenols,
carotenoids, chlorophylls, sterols, terpenoids and a wide range of volatile com-
pounds, all directly or indirectly affecting the olive oil quality and aroma [15].
Given the importance of the olive fruit and the nutritional value of its oil, it would
be of great interest the comprehension of metabolic changes leading to the
biosynthesis of compounds relevant for the quality of both, fruit and oil.

From a proteomic angle, olive drupes exemplify a recalcitrant plant material.
Similarly to other plant tissues, drupe tissues contain very low amount of proteins
(approximately 2 %) [16] and display a high content of proteases and metabolites
such as phenolics, organic acids, lipids, pigments and polysaccharides, making
them a challenging source for protein extraction. In addition, they accumulate oil in
the mesocarp, reaching up to 28-30 % of the total pulp fresh weight, with an
accumulation peak after the onset of ripening. Such interfering compounds are
responsible for irreproducible results, such as proteolytic breakdown, charge
heterogeneity and streaking on traditional 2-D gels. This probably explains why
scarce research has been devoted to the identification and characterization of olive
pulp proteins so far (Fig. 3.1).

As matter of fact, literature is very rich in studies aimed at determining the main
components of olives and olive oils; by contrast, minor fruit components, such as
proteins, have been scarcely investigated, despite their putative role in oil stability,
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Fig. 3.1 Schematic workflow of the proteomic investigations in Olea europaea

as suggested by different authors [17]. It has been hypothesized that peculiar pro-
teins of drupe mesocarp can be transferred to the oil during oil extraction.

Before 2011, the only protein described in olive pulp and oil was the 4.6 kDa
oleosin-like polypeptide [16, 18]. In the latest years, efforts to deeply characterize
olive drupe protein have been focused on the development of an extraction pro-
cedure form both olive pulp and seed, yielding very few bands on Coomassie blue
stained gels [19, 20]. The introduction of combinatorial peptide ligand libraries
(CPPLs), commercially available under the trade-name ProteoMiner (Bio-rad), has
been proven to be an useful tool for protein extraction in difficult matrix [21]. Some
authors applied conventional extraction methods followed by CPLLs, identifying
231 olive drupe proteins [22]. Among them, only 9 were identified as proteins
corresponding to the species Olea europea, due to the little information available in
protein database for this species. The remaining identifications were carried out by
homology with different sequenced organisms.

Despite the absolute novelty represented by these works in the context of olive
drupe proteomics, they are very far from providing significant information about
drupe developmental process, as they are focused on technical traits and provide a
small sub-set sof proteins. In 2013, Capriotti and colleagues proposed a gel-free
proteomic platform for the identification of proteins in ripe olives [23]. In contrast
with aforementioned investigations, that were established on mono-dimensional
gel-based technique combined to different types of mass spectrometric instrumen-
tation, these authors proposed a shotgun proteomic approach. In particular, they
used a high resolving power LTQ-Orbitrap XL coupled to an improved, minia-
turized liquid chromatography system, delivering a significant increase in the
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number of identified proteins compared to previous works. A total of 1456 proteins
were identified in fruits of “Caninese” cultivar, collected during olive harvesting for
oil production. This represents the largest dataset of proteins identified so far in
olive drupes. However, only 22 proteins were identified as proteins belonging to the
O. europaea species. Of these, 7 had been previously reported [19, 22], in par-
ticular, the thaumatin-like protein [19], the acyl-[acyl-carrierprotein] desaturase,
involved in oil biochemistry [24], the beta-1.3-glucanase, commonly found in
higher plants but also recently proven to be a significant allergen [25], and the
Cu/Zn superoxide dismutase, widely described in olive pollen as the allergen Ole e
5 [23]. Among the remaining 15 proteins, it is noteworthy to mention the
hydroperoxide lyase, which catalyses the cleavage of hydroperoxides from
polyunsaturated fatty acids and is responsible for the major components of the
aroma of virgin olive oil [26]; the secologanin synthase, enzyme involved in the
synthesis of monoterpenic moiety of secoiridoids and not yet fully known [27]
polyphenol oxidase, involved in olive fruit browning [28]; the isopentenyl
diphosphate isomerase, involved in the phenolic metabolism in plants, thus it is an
enzyme of particular interest as olive fruit possesses a wide range of secondary
metabolites, like phenols and secoiridoids [27]. Of course, the remaining protein
identifications were carried out by sequence homology to known plant genomes
[23].

The study proposed by Capriotti and colleagues suffers from the main drawbacks
of shotgun proteomics. 1236 out of 1465 proteins were identified through assign-
ments based on single peptide. Although a unique peptide might identify proteins
with a high score, the peptide-centric nature of shotgun proteomics complicates the
analysis and biological interpretation of the data [29]. The same peptide sequence
can in fact be present in multiple different proteins or protein isoforms. Therefore,
such shared peptides can lead to ambiguities in determining the identities of sample
proteins, especially when the information accessible in databases is far from being
complete and assignments are based on sequence homology. This study can be
definitely referred as the first descriptive proteomic investigation of olive drupes,
providing the systematic analysis of mesocarp proteins. Nevertheless, it does not
provide any information about protein fluctuations during drupe development and
ripening. So far, only one paper in literature monitors the proteome variations
associated with olive fruit development by using comparative proteomics coupled
to mass spectrometry [30] and it has been developed in our labs. In details, we
investigated the cultivar “Coratina”, because of its very high phenolic content. In
order to monitor major proteome changes during fruit development and to reveal
modulations in the biosynthesis of compounds related to major quality traits of
olives and oil, we extracted the total proteome content from drupe mesocarp and
epicarp, after pit removal. Three different developmental stages were taken into
account, corresponding to 45, 110 and 150 DAF (days after flowering). Proteins
were extracted by using a classical phenol extraction protocol [31], introducing
some modifications to remove major contaminants and to obtain extracts suitable
for 2-D electrophoresis. Our investigation, in fact, is based on 2-D gels. The use of
electrophoretic_protein separation, spot_excision and in-gel digestion of each gel
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spot before mass spec analysis is an approach commonly employed for large-scale
proteomic studies, fruit proteomics included.

The main advantage of this approach is the separation of proteins in protein
spots, reducing sample complexity prior to digestion. Moreover, different isoforms
can be simultaneously displayed on large gels, information that is completely lost
by using peptide-centric shotgun approach. To take advantages of 2-D gel over
shotgun proteomics, we first optimized a protocol for protein extraction from
recalcitrant matrixes. In particular, we applied the protocol developed by Isaacson
et al. [31] based on phenol, introducing some washing steps before the extraction.
Olive drupes were finely grinded in liquid nitrogen and the resulting powder was
washed in 20 % TCA in water, for protein precipitation and removal of phenolics.
Precipitated proteins were successively washed twice with 20 % TCA in 80 %
acetone for oil removal. Then, proteins were extracted by using phenol, as
described before [19, 31]. By applying this extraction technique, approximately
1600 protein spots were detected on 2-D gels, per each developmental stage,
proving to be an effective protocol for such recalcitrant plant material and providing
the first 2-D map of olive drupes realized until now. In order to detect protein spots
changing in abundance during olive drupe development and ripening, 2-D gels
were subjected to image analysis, revealing 247 differential accumulated protein
spots [30]. Of them, 170 were manually excised from the gel, while the remaining
77 differentially accumulated spots were too faint for being manually picked
up. 121 out of 170 spots were successfully identified. To get this high identification
rate, we performed database searching against the olive fruit EST database [32] and
against in an in-house Olea europaea flower EST database, both generated in our
labs. Only when identifications failed, spectra were searched against Viridiplantae
subset of the non-redundant NCBI protein database.

Among identified protein spots, we found a large number of proteins strictly
related to fruit development. As mentioned before, we analyzed fruit protein content
at 45, 110 and 150 DAF, corresponding to well-defined drupe developing phases.
45 DAF corresponds to a period of rapid fruit growth, due to both development of
endocarp and intense cell division; 110 DAF is a phase marked by a mesocarp
development, mainly due to the expansion of pre-existing flesh cells, whereas at
150 DAF oil accumulation reaches the completion. During fruit development, cells
first divide, as supported by the identification of several proteins playing a role in
cell division; all of them showed an increase in abundance from 45 to 110 DAF and
remained approximately stable during the transition from 110 to 150 DAF. Then,
they expand, as justified by the accumulation of protein spots corresponding to
subunits of vacuolar H*-ATPase. The proton electrochemical gradient generated by
this multi-subunit enzyme might represent a driving force for cell expansion during
development [33, 34]. The changes undergone by fruit cells, which first multiply
and then enlarge, must be supported by massive structural remodelling of the cell
wall and changes in cytoskeleton structure. As a matter of fact, we identified
annexins, playing a role in cell expansion [35, 36], and alpha/beta-tubulins, sup-
porting changes in cytoskeleton.
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Interestingly, several spots corresponding to methionine synthase and
S-adenosylmethionine synthetase were also identified. Their abundance intriguingly
decreased during olive drupe development. Both enzyme belong to the ethylene
biosynthetic pathway, but they are also involved in the biosynthesis of polyamines.
These latter are required for cell growth and cell division. In this context, their
decreasing levels could be related to the transition from early developmental stages,
characterized by intense cell division, to later stages, where their decrease could be
driven by both the cessation of cell division and the non-climacteric nature of olive
drupe ripening, as changes in the availability of soluble methionine limit ethylene
production.

As expected, during fruit development and ripening, photosynthetic apparatus is
progressively dismantled. However, olive drupes seem to retain, for a considerable
period of time, active chloroplasts, that are responsible for photosynthetic activities
[37]. As a matter of fact, different protein spots related to fruit photosynthesis were
identified; many of them showed a similar accumulation pattern at 45 and 110 DAF,
to finally decrease at 150 DAF. The only exception is represented by RuBisCO
large subunit-binding protein subunit alpha, which showed an increase in spot
intensity during fruit development. Photosynthesis occur in fruits with character-
istics different from either C3 or C4/CAM plants. The intense metabolism occurring
during development is responsible for increased level of CO,, which accumulates in
high concentration in the fruit cell-free space, due to the impermeability of fruit
cuticle. Inorganic carbon is fixed into oxalacetate, converted into malate by
malate-dehydrogenase. Malate can be decarboxylated by cytosolic or mitochondrial
malic enzyme to yield pyruvate and CO,. The latter can further be photosyntheti-
cally fixed into triose phosphate in the fruit chloroplasts. It has been demonstrated
that fruit photosynthesis contributes to the carbon economy of developing fruits and
hence to olive oil biogenesis [38, 39]. Remarkably, NAD-malic enzyme
(ME) involved in C4 photosynthesis showed a differential accumulation in our
investigation, increasing during the transition from 45 to 110 DAF, and remaining
approximately stable from 110 to 150 DAF. The accumulation of ME might rep-
resent the proof that in Olea, during fruit photosynthesis, refixing of CO, occurs.
Besides, this might explain the contribution of fruit photosynthesis toward the
biogenesis of olive oil, as well. As a matter of fact, the reaction catalyzed by ME
yields pyruvate, which is the precursor of fatty acid biosynthesis. The malic enzyme
accumulates during developmental stages, where an intense oil accumulation is
expected to occur [15] suggesting a pivotal role for this enzyme in oleogenesis. In
this context, the discussed increase of RuBisCO large subunit-binding protein
subunit alpha might find a new possible explanation: this protein could work as
chaperonin, stabilizing RuBisCO and thus its activity in fixing CO,, yielded by the
malic enzyme beside pyruvate production.

Of course, many proteins related to the metabolism of fatty acids, phenolics and
aroma compounds were also detected; their trend is consistent with the accumu-
lation pattern of oil, phenolic content and volatile compounds.

Olive drupes, and in particular drupes of cultivar “Coratina”, contains high
levels of phenolics as well as aroma compounds, which can be transferred to the oil,
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during mechanical extraction. Thus, quality traits of oil are strictly correlated to the
quality of olives. The olive fruit fly Bactrocera oleae can attack olive drupes,
significantly affecting their quantity and quality as well as the nutritional and
sensory profile of olive oil. Gel-based comparative proteomic has been applied to
investigate specific proteomic changes in drupes with larval feeding tunnels [40].
26 protein spots exhibited differential accumulation in infested fruits. Among them,
8 spots increased in abundance in insect-attacked olives, while the remaining spots
showed the opposite trend. 23 out 26 spots were successfully identified by database
search against Olea europea ESTs available over the WEB, or a plant
non-redundant sequence database. Beta-glucosidase, major latex proteins, phos-
phogluconolactonase and 6-phosphogluconate dehydrogenase showed increased
accumulation. All of them have been previously reported as putative defensive
proteins [41-43]. Interestingly, protein involved in the regulation of redox status
were detected as differentially accumulated. Some of them exhibited decreasing
levels, indicative of plant efforts to maintain homeostasis under stress conditions,
preventing the risk associated to the production of highly reactive cytotoxic ROS.

3.3 Perspectives on Olive Drupe Proteomics

In terms of olive and olive oil production, Italy ranks second in the world, after
Spain. Nowadays, great attention has been paid to olive tree crops, due to Xylella
fastidiosa infection in southern Italy. The fear of spread in the Mediterranean basin
brought out the importance of molecular tools to understand and face the challenges
posed by pests and biotic stresses. The establishment of these molecular tools
cannot prescind from the sequencing of olive genome, which is currently under
investigation. The International Olive Genome Consortium (IOGC http:/
olivegenome.karatekin.edu.tr) has the purpose to sequence the whole genome of
olive, whereas the Italian project OLEA developed genomic resources aimed at
identifying, isolating and determining the function of genes associated with both
vegetative and reproductive phenotype [44]. However, the information currently
accessible in databases for olive is far from being complete. While waiting for the
genome sequences, proteomic approaches can be in any case exploited, as mass
spectra can be collected and searched as soon as genomic resources will become
available. The traditional proteomics workflow for non-model organisms is based
on the interpretation of data against protein databases constructed from annotated
genomes, either from the non-model organism itself or from the most closely
related organisms, or from expressed sequence tag and transcripts information
obtained by sequencing cDNA.

With the advent of high-accuracy tandem mass spectrometers, experimental pro-
teomics data can be used to refine genome annotations, by using an expanding
approach known as proteogenomics, enabling the molecular studies of non-model
organisms, as Olea europea, at an unprecedented depth [45, 46]. Custom databases
can be in fact generated from genomic and transcriptomic information using NGS
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technology in a rather straightforward way and at a reasonable cost for any organism.
Such database can be used to identify novel peptides from MS-based proteomic data
and, in a iterative process, mass spec data can be used to provide evidences of gene
expression at protein level and to help manual re-annotation/curation.

Olive fruit proteomics is still in its infancy, thus there is huge room for inves-
tigation of olive drupe ripening process. The only published work dealing with
proteome variation during drupe development does not investigate ripening [30].
Information in this context is totally lacking, but absolutely necessary to dissect the
molecular mechanisms underlying quality traits related to oil production and phenol
accumulation. Set of high-quality EST can be easily generated from fully ripe
drupes, as described by Parra et al. [47]. The combination of “omics” data in
proteogenomic-flavored approach is expected to provide relevant information on
such relevant process.

Proteogenomics could be also applied to shed light on complex biosynthetic
pathways, for example oleuropein biosynthesis. Olive drupes contain variable
amounts of phenolic content, where secoiridoids represent the most important class.
Oleuropein is the main secoiridoid, representing up to 82 % of the total bio-phenols
and is responsible for the characteristic bitter and pungent taste of the olive drupes
and oil. Proteomic investigation carried out so far revealed no traces of the enzymes
involved in oleuropein biosynthetic pathway on the traditional 2-D maps, likely due
to the lack of sequence information as well as to the high dynamic range charac-
terizing olive drupes. All biological samples, olive drupe included, show a small set
of proteins, often as few as 20-30, present in a large excess, which can leave very
little room for sampling and detection of all other species present therein [48]. Olive
drupe proteomics could take advantages from the development of protein enrich-
ment strategies, such as CPLL, and couple it to comparative or quantitative pro-
teomics techniques, to detect low-abundance proteins and their variations during
ripening [49-51].

Many other biological questions remain open talking about olive drupe pro-
teomics. At the veraison, when fruit change colour and start ripening, olives start
losing their firmness, while increasing the concentration and quality of their oil.
This process greatly depends on the cultivar. From a proteomic point of view, the
comprehension of the mechanisms by which fatty acid composition varies from
cultivar to cultivar during olive fruit development and ripening would represent an
important step toward the ultimate goal of regulating these processes in a directed
and predictable manner.
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Chapter 4

Proteomics in Detection of Contaminations
and Adulterations in Agricultural
Foodstuffs
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and Ghasem Hosseini Salekdeh

Abstract Proteins are essential components of our diet and are found in almost all
foodstuffs. Food proteomics is a broad term used to describe technological and
methodological approaches used to characterize protein constituents of a particular
food product. In recent years, incremental advances in mass spectrometry (MS)-
based proteomics have resulted in the development of robust, sensitive, and ver-
satile analytical tools that can be used to describe safety, quality, traceability, and
originality of different food products. Interestingly, MS-based proteomics has now
become the method of choice for rapid, targeted, and cost-effective analysis of
foodstuffs of different origin for possible adulteration and contamination. In addi-
tion, proteomics has well-performed in characterization of allergen proteins in
foodstuffs as well as in safety assessment of processed food products in terms of the
presence of food allergens, food-borne microbes or microbial toxins. In this chapter,
we will review achievements obtained by proteomics with an especial emphasis on
the sensitivity and detection limit of currently-available MS-based proteomics
approaches used for the detection of food contaminations and adulterations.
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4.1 Proteins: A Major Constituent of Our Foods

Proteome is defined as a total set of proteins expressed by a genome at a definite
point in time and under a particular cellular state. In contrast to genome that is
largely static, proteome is highly dynamic and significantly differs in between
different cells, tissues, and organs of an organism and also changes in response to
environmental stimuli. Proteins are critical for almost every biological process in
living organisms including catalysis, signaling, motility, immunity, and sensing.
Indeed, proteins are the main building blocks of living organisms, found in nearly
all biological samples and therefore, constitute the major part of our foods. Proteins
largely define nutritional and physicochemical characteristics of foodstuffs includ-
ing viscosity, thermal conductivity, and vapor pressure while contribute to the
formation and stabilization of foams, gels, and fibrillary structures in foodstuffs as
well [1, 2]. As an important component of foodstuffs, proteins and their amino acid
constituents, contribute to the color, flavor, and aroma formed during thermal or
enzymatic reactions carried out for the production, processing, and storage of
foodstuffs too [2]. For instance, in wheat flour-derived products, gluten proteins
contribute to the physical properties by providing visco-elasticity to the resultant
dough [3]. In other food products such as milk, meat, vegetables, and fruits, which
display complex protein composition, changes in physical properties during pro-
cessing are largely determined by their protein contents [1, 4]. The protein com-
position of foodstuffs varies depending on their origin (animal or plant), species,
tissue or organ used as food, and the extent of processing including storage, fer-
mentation, cooking, etc. The huge diversity of proteins marks them as suitable
candidate markers for the detection of food contamination and adulteration as well
as for acknowledging food authenticity, safety, and traceability (Fig. 4.1). On such
basis, proteomics is now providing the power, specificity, and precision required for
detailed exploration of food proteins to satisfy food forensics requirements.

4.2 Proteomics Tools and Techniques

Proteomics enables detailed characterization of the proteins present in a biological
sample in terms of type, abundance, post-translational modification (PTMs),
interactions, and cellular localization [5]. Proteomics analysis involves a combi-
nation of different analytical methodologies for high resolution protein separation,
quantification, and identification as well as bioinformatics for data management and
analysis. Indeed, the term proteomics came into practice through the improvements
achieved in two-dimensional gel electrophoresis (2-DE) for protein separation. In
2-DE based proteomics analysis, the signal intensity of protein features is compared
between two biological conditions and newly synthesized, disappeared, and
up/down regulated proteins are identified. The candidate spots are subsequently
gel-recovered and subjected to mass spectrometry (MS) for protein identification
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Fig. 4.1 A general workflow for food proteomics. Food proteins are extracted and separated using
2-DE or chromatography based approaches. 2-DE has been extensively utilized for the
identification of food allergens. In this approach, 2-DE separated proteins are transferred to a
nylon membrane and immunoblotted using sera of patients displaying immunogenic reaction to
that food. Candidate spots are then gel recovered and subjected to in-gel trypsin digestion and
analyzed for protein identification by either MALDI-TOF MS or LC-ESI-MS/MS instruments. In
chromatography based separation, extracted proteins are trypsin digested and the resulting peptides
are separated using a combination of cation exchange (CEX) and reverse phase (RP)
chromatography. In this approach, the separated peptides are directly injected into the ionization
source of MS for tandem MS (MS/MS) based protein identification. MS-based proteomics in
combination with multiple reaction monitoring (MRM) enabled sensitive, accurate, and targeted
analysis of a specific set of protein markers for the detection of food adulteration, contamination, as
well as for acknowledging food authenticity

(Fig. 4.1). Although 2-DE has extensively been utilized for systematic proteome
analysis in diverse biological systems, the limitations associated with this approach
including difficulty in detection of low abundant, poor soluble, as well as very small
or large proteins and those with extreme pl, have largely restricted its applicability
for high throughput proteome analysis specially for the detection of food contam-
inations and adulterations. However, 2-DE based proteomics has been successfully
applied to the detection of allergen proteins in foodstuffs [6].
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It is worth quoting that proteomics has been largely enhanced with the advances
made in the application of MS for protein identification. The introduction of soft
ionization techniques, namely electrospray ionization (ESI) [7] and matrix-assisted
laser desorption ionization (MALDI) [8], for gentile ionization of proteins and
peptides, was a breakthrough for proteomics. A typical MS instrument consists of
an ion source (MALDI or ESI) for peptide ionization, a mass analyzer (quadrupoles
(Q), time-of-flight (TOF), ion trap (IT), Orbitrap, and ion cyclotron resonance
(ICR) for separation of peptide ions according to their mass to charge ratio (m/z),
and a detector for ion detection and quantification. Depending on their mode of
action, MS instruments most commonly used in proteomics analysis fall into two
categories: single stage MS instruments and tandem mass spectrometers (MS/MS)
[9]. The most common single stage MS instrument is configured by coupling the
MALDI ionization source with TOF mass analyzer (MALDI-TOF), an instrument
widely used for protein identification using peptide mass fingerprinting (PMF) [9].
The PMF is particularly suitable for the identification of proteins whose sequences
are available in the databases, proteins from species for which genome sequences
are available, as well as for the identification of proteins from 2-DE separated spots
[10, 11]. The MS/MS instruments are typically equipped with two mass analyzers
which are arranged in tandem and are separated by a collision-induced dissociation
(CID) cell. In order to reduce sample complexity prior to MS analysis, most modern
tandem mass spectrometers are coupled on-line with a multidimensional
chromatography-based separation. A different combination of chromatography-
based separation including size exclusion chromatography, cation or anion
exchange chromatography, reverse phase (RP) chromatography, and affinity chro-
matography is used for protein and peptide separation through high performance
liquid chromatography (HPLC) interface. In a typical HPLC-MS/MS system,
peptides eluted from the last chromatography column (usually RP) are ionized in
the ionization source (ESI) and are scanned for m/z ratios in the first mass analyzer
(TOF, Q, or ion trap). Subsequently, a specific set of ions is selected (user defined,
usually most intense ions) and the ions are allowed to sequentially enter into the
CID (based on their m/z ratios), in which they are subjected to fragmentation
through collision with inert gas molecules. Fragmented peptide ions are then
scanned by the second mass analyzer (TOF, Q, ion trap, Orbitrap, or FTICR) and
their m/z ratios are recorded as MS/MS spectra. The MS/MS spectral data are then
used for protein identification using de novo sequencing, peptide mass tagging,
and/or in silico matching of MS/MS spectral data with the theoretical spectra cal-
culated for all peptides in the databases (Fig. 4.1) [12]. New MS instruments with
different MS/MS configurations including MALDI or ESI-Q/TOF, MALDI-TOF/
TOF, ESI-triple quadrupole (TQ), ESI-LIQ, ESI-LTQ/Orbitrap, and
ESI-LTQ-FTICR have been developed which have varying resolution, sensitivity,
mass accuracy, dynamic range, and applicability in proteome analysis [13].
Advances in the MS-based proteomics has now enabled researchers to specifically
monitor the abundance of a single protein across multiple samples with high
reproducibility and accuracy through multiple reactions monitoring (MRM) [14,
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15]. This approach is particularly useful for monitoring the abundances of a specific
set of marker proteins for the detection of food contamination and adulteration.

In recent years, 2-DE and to a larger extent, MS-based proteomics has been
extensively utilized for the analysis of food composition, authentication, and safety
[16, 17], and also to the search for protein markers for the detection of food
contamination [16, 18-22], adulteration [23-32], and allergens [6, 33]. MS-based
proteomics approaches have proven to be highly sensitive, specific, accurate, and
dynamic compared with the other methodologies used for the detection of food
contamination and adulteration [34]. In this chapter, we will review achievements
obtained by proteomics with an emphasis on the sensitivity and large scale appli-
cability of currently-available MS-based proteomics approaches for the detection of
food contaminations and adulterations.

4.3 Proteomics in Assessment of Food Safety

Food safety is a broad term used to describe concerns regarding food quality or
composition, origin, and the presence of allergens, pathogens, and other contami-
nations [35]. Food safety is therefore one of the most important food-related issues
which requires novel analytical tools for sensitive, accurate, and robust analysis of
food composition for the detection of biotic and abiotic contaminations that might
compromise the health of the end user consumers. In this respect, the characteri-
zation of food-born allergens and pathogens represents a growing challenge in the
field of food safety.

4.3.1 Food Allergens

Food allergens are naturally occurring compounds, found in diverse food products
as main ingredients or included as additive to foodstuffs during processing and
storage. These compounds are capable of causing adverse immune reactions in
sensitized individuals. The huge diversity of food allergens and different immune
reactions of individuals to these allergens make it difficult to achieve an ultimate
cure. Therefore, allergic patients are forbidden to consume potentially allergenic
foods, even at small quantities [36]. Proteins are the major allergens found in
foodstuffs derived from diverse agricultural products including milk, egg, wheat,
soybeans, peanuts, tree nuts (e.g., walnuts, hazelnut, almonds, pecans, and cash-
ews), and fish [37]. Allergic reactions to milk, egg, and soybean are more common
in children, whereas fresh fruit, nut, and seafood are more allergic in adults [38].
For example, peanuts and tree nuts cause anaphylaxis reactions which are among
the most life-threatening allergic reactions in humans [39]. It is estimated that
allergy to food products affects 5 % of adults and 8 % of children worldwide [38].
This_highlights_the importance _and_the urgent need for the development of
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high-throughput proteomics approaches for the detection and characterization of
potential food protein allergens, PTMs that may give allergic properties to food
proteins, and changes that may occur in immunogenic potential of food proteins
during processing, storage, and cooking. Identification of food allergens allows for
recombinant production of allergen proteins for use in immunotherapeutic
approaches and also for the generation of genetically-modified plants knocked out
for allergen proteins or epitopes. Interestingly, genetically-modified soybean and
tomato plants with reduced allergen proteins content have been generated and some
of them have been approved for use as safe non-allergic foods by the U.S. food and
drug administration (FDA).

The most widely-used proteomics approach for the detection and identification
of food allergen proteins involves a combination of 2-DE and IgE immunoblotting
analysis with the sera of allergic patients as probe. Potential candidate allergen
proteins are then gel-recovered and subjected to MS or MS/MS for protein iden-
tification. The immunological responses to food allergens can be either
IgE-mediated or cell-mediated. As an essential constituent of human diet, milk is
one of the main allergic foods particularly in the early childhood. It has been
estimated that between 2-3 % of infants younger than 2 years of age are allergic to
cow’s milk [40]. More than 25 different proteins are found in cow’s milk, out of
which only a few are known as allergens [41]. Caseins and B-Lactoglobulins are
among the highly-abundant milk proteins eliciting an IgE-mediated immune
response in patients suffering from cow’s milk intolerance. Proteomics studies have
also found that less abundant proteins such as lactoferrin, IgG, bovine serum
albomin may also elicit allergic reactions [40].

Peanuts or peanut derived food products are among the most frequently reported
allergens in the U.S. [39]. Using a combined 2-DE, immunoblotting, and MS
analysis, Chassaigne et al. were able to identify several isoforms of storage proteins
as main peanut allergens, namely Ara h 1, Ara h 2 and Ara h 3/4 [42]. In addition,
proteomics analyses have also shown that different varieties of peanuts display
variable amounts of these allergens [43]. 2-DE was also applied to search for
sesame seed allergens. Probing 2-DE resolved sesame proteins using sera of
patients with sesame seed allergy resulted in the identification of a storage protein
named Ses i 3 [44]. Interestingly, Ses i 3 showed 80 % sequence similarity with one
of the IgE-binding epitopes of peanut allergen Ara h 1. Similarly, 2-DE analysis
coupled to immunoblotting resulted in the identification of an allergen protein, Cor
a 9, as hazelnut food allergen which belonged to the 11S globulin family of seed
storage proteins [45]. Interestingly, an IgE-binding epitope of peanut allergen
protein Ara h 3 also showed 67 % amino acid sequence similarity with a corre-
sponding region in Cor a 9, suggesting that IgE-binding epitopes in different food
allergens are evolutionary conserved. A similar approach also showed that all three
subunits of beta-conglycinin protein are capable of mounting allergic reactions in
patients with soybean allergy [46]. Targeted quantification using tandem MS in
MRM mode represents as promising approach in the detection of food allergens.
Using this methodology, Houston et al. [47] monitored the concentration of 10
allergen proteins.in 20 commercially-available soybean varieties and demonstrated
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that seed concentration of soybean allergens was quite similar among different
genotypes and ranged from 0.5 to 5.7 pg/mg of total protein. MS-based proteomics
has also been used for the detection of trace amount of peanut allergens in food
products that might be unintentionally contaminated with peanut. In this respect,
Careri et al. [48] applied LC-MS/MS analysis to investigate the presence of peanut
allergens of Ara h 2 and Ara h 3/4 in selected foodstuffs. The method allowed
identification of as low as 1 pg/g peanut allergens in rice crisp and chocolate-based
snacks.

Celiac disease (CD) is a non-IgE or cell-mediated allergic reaction to gluten
proteins found in cereal crops such as wheat (Triticum aestivum), barley (Hordeum
vulgare), and rye (Secale cereale). Consumption of food products containing gluten
by patients suffering from the CD elicits a chronic inflammatory reaction and causes
damages to small intestine mucosa followed by severe consequences for the patient.
CD is known to associate with the presence of HLA-DQ2/8 and the generation of
circulating autoantibodies to the enzyme tissue transglutaminase [49]. Indeed, in
patients suffering from the CD, the immune system reacts to the peptides derived
from gluten proteins. The immune response is associated with increased population
of a subset of lymphocytes and the generation of antibodies that attack the lining of
the small intestine causing damages to the intestinal villi and consequently leading
to reduced nutrient absorption [21, 50]. The prevalence of CD is estimated to be
0.6—1 % of population worldwide [51].

The consumption of as little as 1 mg of gluten, which is roughly equivalent to
the amount of gluten found in a half of a grain of barley is sufficient to elicit the
immune response and to compromise the health of the patients suffering from CD
[52]. Since gluten is the only known trigger for CD, gluten-free diet is its ultimate
scientifically proven treatment. Therefore, gluten has to be eliminated from all food
products and medications obtained from wheat, barley, and rye because even trace
amounts of gluten in dietary foods has severe consequences for gluten intolerant
patients. Clear and accurate labeling of food products is therefore critical for the
detection of gluten-free foods and the protection of gluten intolerance patients. It
has now been well-documented that the consumption of wheat, barley, and rye is
harmful to patient suffering from the CD. However, a recent long-term feeding
study suggested that oat (Avena sativa) was safe for CD suffers [53]. Pure oat can
therefore be used as safe gluten-free nutrient for CD patients. However, oats are
frequently contaminated with other celiacogenic cereals such as wheat, barley, and
rye during farming, transport, storage, and processing [54]. Accurate detection of
wheat, barley, and rye contamination in oat and soybean flour and other food
products is critical for protecting consumers with the CD. According to the United
States FDA, food products labeled as gluten-free must contain less than 20 ppm
gluten from wheat, barley, rye, and crossbreds cereals like triticale [55]. Although
enzyme-linked immunosorbent assay (ELISA) is known as sensitive and reliable
method for the detection and quantification of gluten, this method suffers from high
false-positivity and inadequate quantification. ELISA has been successfully applied
to the detection of wheat gluten and barley hordeins contaminations in 109 out of
134 tested oats and oat-derived food products [56].
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MS-based proteomics represents a complementary approach with unique capa-
bility in targeted as well as sequence and species-specific detection and quantifi-
cation of gluten proteins in different food products derived from cereal crops. This
approach has been used for the detection of immunogenic gluten peptides eliciting
immune and inflammatory responses in CD patients [57]. MS-based proteomics has
been successfully applied to detect wheat gluten contamination in various food
products. In a study, Sealey-Voyksner et al. applied LC-MS/MS analysis to monitor
the presence of trace amounts of wheat gluten peptides in a list of gluten-free and
gluten-containing food products [58]. ESI-triple quadrupole MS/MS instrument
(ESI-QQQ) enabled the detection and quantification of six gluten peptides in dif-
ferent foodstuffs over a range of 10 pg/mg—100 ng/mg. The accuracy of detection
was estimated to be 90 % for the lower concentration level and 98 % for con-
centrations within the range of 30-60 ng/mg. In a recent study, targeted MS-based
proteomics enabled highly sensitive and accurate detection of close to 1 ppm wheat
gluten contamination in oat flour [54]. Colgrave et al. also developed a MS-based
proteomics approach involving a combination of LC-MS/MS and MRM for tar-
geted quantification of wheat gluten in commercially sourced flours, including rye,
millet, oats, sorghum, buckwheat, and three varieties of soy [21]. The method also
enabled the rapid, sensitive, and reproducible detection of wheat gluten peptides in
intentionally-contaminated soy flour at concentrations down to 15 mg/kg. These
studies have provided evidences showing that MS-based proteomics methodologies
are extremely robust and sensitive in the detection of food contaminations in a wide
dynamic range.

4.3.2 Food Borne Microbes

The detection of food-borne pathogenic microorganisms, mostly bacteria and fungi,
and their toxins in food products is one of the main challenges of food safety.
Food-borne microbes impose a serious health risk to humans and thus, are the major
causes of food-borne illnesses (commonly known as food poisoning) worldwide.
With the concurrent development of antibiotic resistance, the health risk associated
with food-borne microbes is increasing. According to the US Department of
Agriculture’s Food Safety and Inspection Service, the most common pathogens for
food-borne illnesses are Salmonella, Campylobacter, Shigella, Cryptosporidium,
Shiga-toxin producing Escherichia coli, Vibrio, Listeria, Yersina, and Cyclospora
[59]. Food-borne pathogens usually release proteinaceous factors (toxins) into the
food matrix without changing appearance, odor or flavor of the food product. These
toxic proteins are produced to facilitate the infection and multiplication of the
microbe itself in the host cells. Some food borne bacteria pathogens secrete the
most powerful human poisons known including enterotoxins, neurotoxins, leuko-
cidins and hemolysins [60]. The majority of food borne microbial toxins are heat
stable and are able to escape and remain active in thermally processed food
products. With respect to.the sensitivity and robustness of the MS-based proteomic
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methodologies, proteomics can therefore be used for the exploration of food
products for the presence of microbial pathogens or their toxin proteins.

MALDI-TOF MS represents a fast, sensitive, and cost-effective tool for the
identification of microbial toxins in diverse food products. Among food borne
pathogens, Staphylococcus aureus is an important enteric bacteria commonly
detected in foodstuffs of animal origin such as meat and milk. The pathogenicity of
S. aureus largely depends on enterotoxins produced and secreted by the bacterium
into the food matrix. The secreted toxins are resistant to heat, freezing, and irra-
diation and therefore, may remain active even after sterilization and pasteurization.
The safety concern regarding the presence of S. aureus in food products has
motivated food scientists to search for novel technologies for targeted detection of
secreted enterotoxins. In a preliminary study, SDS-PAGE fractionation of milk
proteins precipitated by a mixture of dichloromethane and acidified water followed
by MALDI-TOF MS analysis led to the detection of Staphylococcal enterotoxin A
in contaminated milk samples [61]. Recently, highly sensitive and targeted LC-MS/
MS in MRM mode was successfully applied to quantify Staphylococcal entero-
toxins A and B in milk samples [62]. The method also allowed successful dis-
crimination of A and B type toxins at a detection limit of 8 and 4 ng/g, respectively,
in a single run, proving the power of the targeted MS analysis for the identification
of contaminated food products.

MS-based proteomics has also well performed in the identification of food borne
pathogens such as Listeria monocytogenes, E. coli, and Yersinia pestis.
Consumption of food products contaminated by L. monocytogenes leads to the
development of listeriosis, which has a high fatality rate (20-30 %) in high-risk
individuals [63]. L. monocytogenes was conventionally detected by culture-based
methods and biochemical tests, which are generally highly expensive and
time-consuming. Recently, Jadhav et al. [64] applied a MALDI-TOF MS approach
for direct detection of L. monocytogenes in food enrichment broth taken from three
different solid foods including chicken paté, fresh cantaloupe, and Camembert
cheese with a relatively high sensitivity (down to 10 colony-forming unit (cfu) per
mL) and limited time (30 h). In another study, a combination of intact cell
immunocapture and LC-MS/MS in targeted SRM mode was used for direct
detection of Y. pestis in contaminated milk samples [65]. In this approach, bacterial
cells in milk samples were enriched using immobilized monoclonal antibodies
specifically binding to the Y. pestis-specific plasmid encoded surface proteins (pFra
and pPla) followed by trypsin digestion of protein mixture and targeted identifi-
cation of peptide markers. The method allowed for the rapid detection of Y. pestis in
contaminated milk or tap water at a detection limit of 20,000 cfu/mL, which was
comparable to the sensitivity of the conventional immunoassay tests. Ochoa et al.
[66] employed a similar methodology for the identification of enterohemorrhagic
E. coli serotype O157:H7 in ground beef samples. Through a pre-enrichment step,
authors were able to monitor meat contamination for pathogenic E. coli at a
detection limit of 2 million cells per mL.

Contamination of food products with microbes and their toxins are not limited to
bacteria. Fungi are also important source of biological contaminations, especially in
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cereal derived products, compromising the safety of food products and imposing
health hazards by the secretion of mycotoxins. Mycotoxins are toxic secondary
metabolites commonly detected in foods contaminated by molds of genera
Aspergillus, Penicillium and Fusarium [67]. Aflatoxins, zearalenone, fumonisins,
ochratoxins, trichtothecenes, tremorgenic toxins, and ergot alkaloids are among
common food borne mycotoxins detected in contaminated food products. Currently,
LC-MS/MS is one of the technically robust and sensitive tools for rapid and
simultaneous detection and quantification of non-proteinaceous toxins in contam-
inated foods [68]. For example, this method has been successfully applied by
Capriotti et al. for the detection of a range of mycotoxins including thricotecenes A
and B, zearalenone, fumonisins, ochratoxin A, enniatins and beauvericin in biscuits
[69]. Using a combination of solid phase extraction procedure and LC-MS/MS
analysis, the authors were able to quantify as low as 0.04 pg/kg mycotoxin in
commercially sourced biscuits samples.

Proteomics has also been used to overcome food safety concerns regarding the
presence of prion proteins in animal derived products. Prions are unique class of
transmittable infectious proteins causing a group of transmissible spongiform
encephalopathies diseases in animals and humans [70]. Prion proteins are usually
transmitted by the consumption of meat products derived from infected animals
[71]. As an example, the consumption of meat products from cows infected with
bovine spongiform encephalopathy (mad cow disease) in the United Kingdom
resulted in transmission of the disease to humans and the development of a new
variant of Creutzfeldt-Jakob Disease (nvCJD) [70]. Sensitive and accurate detection
of prion proteins are therefore necessary for the assessment of the safety of meat
products and also for the early detection of diseased animals and their elimination
from food chain. To date, the detection of prion protein (PrP5°) has largely relied on
western blotting (WB), ELISA, and the conformation dependent immunoassay
(CDI) with the detection limit ranging from 10 to 20 pmol for WB down to the
0.1 pmol for the CDI immunoassay [72]. However, prion proteins are present in
attomol quantities in biological samples of infected animals, necessitating the
improvement of the detection limit for the assurance of the safety of animal derived
food products. To this aim, Onisko and coworkers applied targeted nLC-MS/MS
analysis to quantify PrP protein in the brains of terminally ill Syrian hamsters at a
detection limit of 27-30 amol [73], proving the power of the MS-based proteomics
in the detection of biologically-contaminated food products at a detection limit far
below what could be detected by the other analytical procedures.

4.4 Proteomics in Detection of Food Adulterations

Food adulteration is defined as any intentional or unintentional partial or complete
substitution of a food product with inferior or forbidden materials or the removal of
some valuable ingredients from the main food article, which both may lead to
decreased. food. quality. Food. adulteration is now increasingly being practiced in
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various consumer sectors. Most agricultural foodstuffs including dairy and meat
products, cereals, legumes, beverages, eggs, and fruit products are commonly
subjected to adulteration for short-term economic profit, without any concerns
regarding the potential health risks. Consumption of food products containing
undeclared ingredients may impose health risks such as food toxicity, allergy, and
intolerance in sensitized individuals [74]. Authentication of raw materials and
processed food products are therefore of utmost importance from both consumer’s
and industrie’s points of view. The detection of food adulteration is a technical
challenge since adulterated food products have almost the same chemical compo-
sition compared with their original counterparts. This has forced food standard
agencies and control laboratories to search for novel technologies to define the
molecular composition of different food products and to differentiate genuine
products from similar but adulterated ones [74]. It is worth to note that the defi-
nition of a food product at the molecular level is not a trivial task, since food
products are usually complex in nature and are composed of different biological
materials, each with unique chemical and molecular compositions [74]. Numerous
analytical methods based on chemical and physical properties of foodstuffs have
been developed and applied to verify the identity of different food products and to
check for possible illegal adulteration. Since protein composition of foodstuffs
changes due to adulteration, proteomics can therefore be used for the detection of
such food frauds. In addition, proteomics can also be employed for the identifi-
cation of unique protein markers for rapid, sensitive, and high-throughput detection
of adulterations commonly practiced in different food products.

4.4.1 Adulteration in Dairy Products

As a major constituent of human diet and main source of nutrients, proteins, and
microelements for the newborns and adults, raw milk is frequently subjected to
adulteration. Ovine, caprine, and buffalo milk are usually adulterated with bovine
milk, because of their limited availability and higher prices. Interestingly, caprine
milk has high nutritional value compared with bovine milk and has been recom-
mended as a nutritious food for physically weak people [31]. It also displays limited
allergic reactions in infants who are intolerant to cow’s milk [75]. To demonstrate
the applicability of the MS-based proteomics in detection of milk adulteration,
Chen and coworkers [31] applied HPLC/ESI-MS to detect bovine milk adulteration
in caprine milk. Using a combination of solvent fractionation and MS analysis, they
were able to separate, quantify, and identify beta-lactoglobulin as marker for cow’s
milk adulteration in caprine milk at levels as low as 5 %. Recently, Girolamo et al.
[24] reported the identification of bovine, buffalo, and ovine milk adulteration in
caprine milk at an adulteration level down to the 0.5 % using a combination of
MALDI-TOF MS and principle component analysis (PCA). Interestingly,
MALDI-TOF was represented as fast, reliable, robust, and sensitive analytical
instrument that could be adapted for routine analysis of dairy products without any
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needs for laborious pre-analytical sample separation steps. In another study, Sassi
et al. [23] developed a peptidomic profiling strategy based on MALDI-TOF MS
instrument to explore cow’s milk adulteration in ovine, caprine, and water buffalo
milk as well as the addition of powdered cow’s milk to its fresh counterpart. In
addition, MALDI-TOF analysis also enabled rapid detection of thermal treatment
markers in different types of commercially sourced milks. MALDI-TOF MS-based
proteomic has also been used for the determination of cow milk adulteration in
donkey milk with a detection limit of 0.5 % [24]. Donkey milk can be used as the
best substitution for mother’s milk in newborns that are intolerant to cow’s milk.
Indeed, donkey milk has high nutritional and health promoting characteristics as
well as limited allergic properties compared to cow’s milk [76].

4.4.2 Adulteration in Meat Products

Clear and informative labeling of meat products are critical from both economic and
religious points of view. For example, the consumption of meat products derived
from species such as pork, horse, donkey, and many other non-ruminant and car-
nivorous animals is forbidden by Islam marked as non-Halal or Haram foodstuffs.
Therefore, the presence of trace amounts of meat from such species in food
products make them Haram and/or Makrouh for Muslims. Nevertheless, raw meats
or processed meat products are frequently subjected to adulteration by fraudulent
addition or substitution with meat from lower priced or forbidden species. This
necessitates the development of species-specific markers for the authentication of
meat products. In this regard, MS-based proteomics approaches have been shown to
provide the required specificity and precision. To this aim, Sentandreu and
coworkers applied a MS-based proteomics approach to substantiate the presence of
chicken in meat mixes using species-specific peptide biomarkers derived from
myofibrillar proteins [18]. Myofibrillar proteins are of particular interest in this
respect because they are quite resistant to food processing such as cooking and heat
treatment making them ideal candidate markers for meat authentication. The
developed method allowed the detection of as low as 0.5 % w/w contaminating
chicken in pork meat with a high sensitivity and precision, even after cooking. Von
Bargen et al. [77] applied a combination of fractionation for the myofibrillar and
sarcoplasmic protein fractions from unprocessed meat samples and targeted
MRM-based method for quantitative monitoring of species-specific peptides for
rapid and sensitive detection of horse and pork meat contamination in beef.
Single MRM transition allowed the detection of as low as 0.55 % horse and pork
meat contamination in beef. However, triple MRM transition using a QTRAP
instrument extended the limit of detection to as low as 0.13 % pork meat con-
tamination in beef, suggesting that triple MRM significantly improved the speci-
ficity and sensitivity of detection. In a complementary study, von Bargen and
coworkers applied the same approach for the detection of pork and horse meat
contamination. in_processed beef and several commercially sourced food products
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[17]. The method resulted in the detection of as low as 0.24 % horse and pork meat
in processed beef meat matrix. They demonstrated the applicability of targeted
MS-based proteomics approach for the rapid and sensitive detection of meat con-
tamination in extensively processed (boiled or fried) food products. Recently,
Montowska and coworkers applied the ambient liquid extraction surface analysis
mass spectrometry (LESA-MS) methodology for the identification of peptide
markers for authentication of thermally processed meat products [78]. Interestingly,
the method allowed the detection of 10 % (w/w) of pork, horse, and turkey meat
and 5 % (w/w) of chicken meat in beef, relatively faster and simpler than previously
used approaches. Indeed, the LESA-MS technique requires minimal sample
preparation and does not need any sample pre-fractionation steps, enabling rapid
and sensitive detection of species-specific peptide biomarkers for the authentication
of raw and processed food products. These results suggest that peptide biomarkers
are sufficiently resistant during thermal treatments and are therefore best suited for
the authentication of processed food products.

The adulteration of meat products is not just limited to the fraudulent mixing of
meat samples of different origins, but it also involves the use of less valuable
components of animal origin such as offal and connective tissues or the addition of
vegetable proteins in place or in combination with meat in the production of pro-
cessed meat products. For example, food products manufactured from meat are
sometimes supplemented with limited amount of soybean proteins as emulsifiers in
order to avoid fat coalescence during heat treatment. Soybean proteins have
excellent nutritional qualities and functional properties which have promoted their
use in a variety of food products [79]. However, the lower cost of soybean proteins
compared with proteins of animal origin promotes their fraudulent use in quantities
exceeding the permitted values as emulsifiers. Because of the allergic properties of
soybean proteins, undeclared addition of these proteins may impose health risk to
patients who have allergy to soybean proteins [79]. This has forced standard
agencies to develop analytical methodologies enabling sensitive and accurate
quantification of soybean proteins in diverse food products that might be at risk of
soybean adulteration. In this regard, MS-based proteomics approaches have the
required speed and sensitivity for monitoring soybean-specific proteins in processed
food products, as exemplified by Leitner and coworkers [29]. In this work, authors
were able to specifically monitor the presence of soybean proteins in processed
meat products. Using a combination of chromatographic separation and MS/MS
analysis, different subunits of glycinin A protein (more specifically glycinin G4
subunit A4) were identified as markers for discriminating soybean-containing foods
from soybean-free counterparts.

4.4.3 Adulteration in Cereals

Proteomics can also be used for the identification of adulterations commonly
practiced.in cereals. The detection of common wheat contamination or adulteration
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in durum wheat is a well-known example. Durum wheat (Triticum turgidum ssp.
durum L.) is usually cultivated for use in the pasta and spaghetti manufacturing
industries, while common wheat (Triticum astivum) is largely used for bread, bis-
cuits, and bakery production. The presence of common wheat in durum wheat
changes the rheological properties of durum wheat flour, making it unsuitable for
pasta production [80]. The higher price of durum wheat (by about 25 %) compared
with common wheat has led to fraudulent addition of common wheat to durum
wheat, necessitating the development of sensitive approaches for the detection of
possible adulterations [19]. In this regards, many studies have exploited the inherent
differences that arise from different ploidy levels of durum wheat (AABB) and
common wheat (AABBDD) for the detection of common wheat in durum wheat
samples. Targeted amplification of DNA sequences belonging to the DD genome
by polymerase chain reaction (PCR) can be performed with a relatively high sen-
sitivity and specificity using a pair of species-specific primers. This approach has
been successfully used for the detection of common wheat contamination in durum
wheat at a detection limit down to the 0.2 % [81]. Although this approach has been
proved to be sensitive enough for the detection of common wheat contamination in
durum wheat, the requirement for DNA extraction and sensitivity of DNA to food
processing make it unsuitable for high throughput screenings. Recently, Prandi
et al. [19] exploited the power of LC-MS for the detection of common wheat
contamination in durum wheat. Detection was made possible with a single common
wheat specific peptide resulted from the co-digestion of proteins with pepsin and
chymotrypsin. In addition, they were also able to accurately detect common wheat
contamination in diverse commercially-sourced durum wheat flour on the Italian
market, indicating that common wheat contamination in durum wheat was more
common. In a complementary study, Russo and coworkers applied ultra-
performance liquid chromatography (UPLC)-ESI-MS/MS based on MRM for
quantification of common wheat [22]. Targeted analysis of a single tryptic peptide
from puroindoline a (Pin-a) and a cysteine-rich amphiphilic lipid binding protein
from common wheat, allowed the quantification of common wheat in durum wheat
at a detection and quantification limit of 0.01 and 0.03 %, respectively. In addition,
the method allowed accurate monitoring of common wheat contamination in both
raw materials (kernels) and processed durum wheat-derived products (pasta).

4.5 Conclusion

Proteomics has now become the method of choice for safety and quality assessment
of many agricultural foodstuffs, thanks to the advances made in MS analysis.
Methods based on 2-DE proteomics in combination with immunoblotting have
been extensively utilized for the identification of food allergens in a diverse range of
food products. Proteomics has also been well-performed in the detection of
microbial contamination and their toxins. Interestingly, microbial toxins including
both_proteins and metabolites in contaminated food products can now be detected
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and quantified at attomol quantities in targeted and multiplexed mode using novel
LC-MS/MS instruments. Recent progress in MS including the introduction of
MRM holds great promises for rapid, targeted, and cost-effective detection and
quantification of marker proteins for food contamination and adulteration. With
respect to food adulterations, proteomics has now provided the sensitivity and
robustness required for the detection of an adulterated food item from its genuine
counterpart, even if both have almost the same chemical compositions.
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Chapter 5

Holistic Sequencing: Moving Forward
from Plant Microbial Proteomics

to Metaproteomics
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and Ghasem Hosseini Salekdeh

Abstract In natural environments, plant and microbial communities continuously
interact with each other as well as with the environment. Plant-associated microbial
communities are critical to plant growth and health. However, the biological impact
of microbial communities within natural habitats is not only attributed to the bio-
logical activities of a specific microbe, but are also impacted by the microbial
communities as a whole. Hence, a deep understanding of the complexity of
microbial systems cannot be achieved solely by monitoring certain microbes in
isolation. The integration of omics data provides a unique opportunity to tackle
long-term problems in the area of plant and microbial ecology. Environmental
proteomics or metaproteomics provides a practical tool for a better understanding of
the function, structure, dynamics and significance of plant-associated microbial
communities in both natural and man-made environments. To begin this chapter,
we will present the importance of plant associated microbial communities and their
impact on plant growth and health. We will then progress to the application of
different omics approaches, especially proteomics for large-scale protein analysis,
in order to dissect the molecular basis of plant-microbial interactions in a post
genomic era. Next we will examine the advantages of integrating omics data to give
a comprehensive understanding of plant microbial communities toward the devel-
opment of efficient management strategies that reduce the impact of environmental
stress and control plant disease epidemiology. We will conclude with a real
application of metaproteomics to manage a plant phytobiome, thereby promoting
agricultural sustainability.
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5.1 The Second Green Revolution May Depend
on Applications of Beneficial Microbes

Plants often establish associations with beneficial microorganisms to cope with
unfavorable conditions. They receive benefits from symbiosis, which include
increased nutrient uptake from the soil, improved pest and disease resistance and
enhanced tolerance to abiotic stresses. Several studies have focused on the bio-
logical impact of beneficial plant microbes on plant hosts. Scientists aim at
enhancing plant tolerance to environmental stresses by adapting the host plant
through the introduction of beneficial microorganisms and initiating a state of
symbiosis. They have actively pursued research in applications of beneficial
microorganisms as an environmentally-friendly way to help plants to defend
themselves from environmental stresses. Instead of using chemical fertilizers or
pesticides to combat harmful pest and diseases, plant-microorganism symbiosis can
be employed as an alternative way to harness these benefits of microorganisms.
Making optimal usage of this symbiosis is important for the sustainability of
agriculture, especially for organic farmers, who do not use chemical fertilizers or
pesticides.

The biological impact of plant-microbial association on the growth, development
and health of plants is substantial. Plant-microbe symbiotic interactions increase
biomass production, improve plant health, boost stress tolerance and can enable
bioremediation of crop species. An important consideration moving forward is that
plant microbial communities are very dynamic and interactive in that both the plant
and microbes contribute to the outcome of their relationships. However, as a basis,
we know that microorganisms serving together as the plant microbiome produce
considerable improvements to plant traits and special functions. Therefore,
improving plant microbial communities can boost agricultural productivity.
A detailed understanding of how the symbiotic relationships are capable of
enhancing plant adaption is crucial and can lead to sustainable agriculture.

5.2 An Omics-Based Approach to Study
Microbial Communities

Microbial systems biology aims to understand the basis of multifaceted plant
microbial associations by incorporating the analyses of various aspects. The Omics
approach is one of the most robust and fastest growing areas within modern biol-
ogy. The integration of omics data creates a new link between computational
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analyses and the systems biology of microbial communities such as genomics,
population genomics and metagenomics. We now can gain a better understanding
about the interactive partners affecting the complexity of plant microbial commu-
nities. Highly sensitive metagenomics techniques connect the genetics of each
member while simultaneously considering their diversity and how these factors
interact within an environment as seen when studying the microbial community
system which must consider their individual genetics and this interplay as well as
their heterogeneity [1-3]. However, understanding the composition and activity of
microbial communities is more than just studying the biodiversity of microbial
communities; therefore, there are multiple facets to consider regarding metage-
nomics data. Importantly, the structure and function of the phytobiome, which is
driven by both plant species and environmental conditions, cannot be defined by
metagenomics analysis alone [4].

5.3 Plant Microbial Systems Biology; from a Single
Microbe to Microbial Communities

Several recent endeavors in microbial systems biology have focused on plant
microbial communities to accomplish a whole-system understanding of a dynamics
of microbial communities rather than focusing on a single microbe at a certain time
point. All of these interacting microbial communities present in the inner and outer
of parts of a plant are described in total as the phytobiome [5]. Therefore, inte-
grating several layers of information obtained from computational and experimental
techniques including omics data are necessary to construct a complete picture of the
metabolic network active during plant growth and adaptation. Metagenomics
contributes through high-throughput sequencing data to provide the complete
genomes of many plants and microbes. On the other side, with the current advances
in mass spectrometry, we have dramatically increased the depth of proteomic
discoveries. In addition, the recent boosts in genome and proteome data allow the
scientific communities to explore different aspects of plant microbial communities
in natural and man-made environments.

In this context, a new subfield of proteomics, termed metaproteomics, or envi-
ronmental proteomics, has been established which provides substantial knowledge
about the structure and function of microbial communities in real environments. As
a result of metaproteomics techniques, several novel proteins involved in the reg-
ulation of metabolic and signaling pathways have been identified. Specifically,
metaproteomics characterizes the function and structure of plant microbial com-
munities, which help us to have a better understanding about the interactive
metabolic response and microbe-derived signaling molecules between plants and
associated microbial communities. Although the knowledge about the proteins
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produced and secreted by microbes provides a valuable resource to the microbio-
logical communities, this is just the beginning.

5.4 Moving Forward from Plant Microbial
Proteomics to Metaproteomics

Environmental proteomics, or metaproteomics, provides a practical tool for better
understanding the function, structure, dynamics and significance of plant-associated
microbial communities in both natural and man-made environments. Proteomics
data provides a better understanding of the different aspects of gene expression
including the proteome and processes affected by modifications of the genome
(epigenomics), as well as metabolism (metabolomics). As a complementary tech-
nique, metaproteomics not only provides substantial knowledge about the structure
and function of microbial communities in real environments, but also covers
metagenomics data as it represents the functional molecules active within natural
habitats. The metaproteome was first described as “the large scale characterization
of the entire protein complement of environmental microbiota at a given point in
time” by Wilmes and Bond [6]. Through metaproteomics research we are able to
cover different aspects of plant-microbe associations including the function and
structure of microbial communities as well as explore plant signaling molecules
during pathogenic and mutualistic relationships.

During the past few years, several good reviews have been published high-
lighting the potential of a proteomics technique in the study of plant microbial
communities [7]. However, due to the added value in the application of metapro-
teomics, the current book chapter has been included to update information con-
cerning environmental proteomics to represent advances in the field of plant
microbial ecology.

5.5 Metaproteomics Reveals the Structure
and Function of Microbial Communities

Many different factors including the diversity, structure, function, and population
dynamics of plant microbial communities are altered in association with different
plant species and environmental conditions. It has been shown that the alteration in
the structure and dynamics of plant-associated microbial communities has a direct
impact on plant health and growth, which enables us to select effective strategies to
improve plant health [8]. A number of researchers focus on the phytobiome profile
of the plant microbial communities associated with healthy and diseased plants
using metaproteomics [9, 10]. There is a clear difference in rhizosphere
plant-associated microbial populations between plants grown with or without
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Fig. 5.1 Overview of metaproteomics in plant-microbiome interaction. Plant metaproteomics is
the study of proteins in microbial community and present in different parts of a plant such as
phyllosphere, leaf endosphere, rhizosphere, root endosphere, root zone soil and bulk soil. Current
methods in proteomics were used for making omic data for different targets such as identification
of novel enzyme and protein pathways. Also high accuracy identification of microbial functions
can lead to management of microbial resources for sustainable agriculture

establishing mutualistic and pathogenic interactions with plant roots. In Fig. 5.1, we
show the overview of metaproteomics techniques used in environmental studies.

5.6 Using Metaproteomics to Dissect
Plant-Microbe Communications

Several scientists have tried to answer the question of how plants and plant
microbial communities interact with each other in real environments.
Metaproteomics is a helpful tool to study the active compounds and the secreted
proteins released by plants and microbes during the actual interplay seen in nature
[11]. However, the exchange between plant signaling molecules and microbial
communities is not fully understood. Only recently, the links between the com-
position of root exudates released into the rhizosphere and the fluctuations of the
microbial communities have been studied [12]. The structure and composition of
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plant-associated microbial communities exhibit differences during incompatible and
compatible interactions with a pathogen, which leads to disease resistance or sus-
ceptibility [13].

Several attempts have been made to show the metaproteomics profile of
rhizosphere-associated microbes under different environment conditions.
Comparative metaproteomics data analyses collected from samples from the rhi-
zosphere of different crops have led to the identification of several secreted proteins
and signaling molecules [11]. Metaproteomics represents the molecular basis of
plant stress adaptation responses induced by plant-associated microbes [14]. We
hope that by applying metaproteomics techniques secreted proteins participating in
the communication taking place during plant microbial interactions that are
important for pathogen development can be identified (unless you are currently
working in this area). For instance, by blocking the plant-pathogen crosstalk, we
hope to be able to generate broad-spectrum disease resistance in plants.

5.7 Technical Overview of Metaproteomics Approach

Metaproteomics as a novel approach for studying functional microbial ecology
investigations involves several key steps, each of them with its own challenges.
These factors should be carefully considered such as: experimental design, sam-
pling method, protein purification, protein isolation, liquid chromatography (LC)-
tandem mass spectrometry (MS/MS), bioinformatics, and protein identification.
Additionally, reproducible scientific studies require exact programing and
well-documented experimentation. To achieve higher resolution, the practical
endeavors should be outlined before a study’s launch and potential challenges
should be noted.

Before facing other challenges, providing optimized samples with sufficient
copy number is essential. Hence, the preparation of high quality protein extracts is a
very important issue, which can be challenging when dealing with environmental
samples. This is clearly shown in the way most proteome research is limited only to
isolated microbes in axenic culture. In fact, protein isolation methods need a
noticeable improvement of protein extraction protocols and sample preparation
[15, 16].

During cell lysis and protein extraction, the greatest problem is the presence of a
high amount of impurities, especially the high amount of humic acid in soil sam-
ples, and also the various presentations of microbes in a population where some are
sporadic and some form a biofilm given a special substrate [17]. The process of
dealing with impurities needs improvement when performing protein extraction and
fractionation methods for metaproteomics. Thus, optimization of sample prepara-
tion should be emphasized because the challenging computational analyses that
take place at the end of the study are critically affected by these primary stages.
A complicated metaproteome analysis depends on these three stages.
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5.7.1 Protein Extraction

In order to characterize the whole protein profile of an entire microbial community,
methods of extraction need to be employed using the most reproducible and effi-
cient methods. Appropriate protocols currently being used lyse the cells by using
buffers and include one or more detergents (SDS, CHAPS, Triton X-100) [6, 18,
19] chaotropic agents (urea, guanidine hydrochloride) [6], reducing agents
(dithiothreitol (DTT), tributylphosphine) [20], other organic/inorganic compounds
(phenol, NaOH) [21, 22] and temperature treatment (such as boiling, freezing,
thawing) [23, 24] or mechanical destruction (grinding, bead beating and sonication)
[25-27]. Since Gram positive and Gram negative bacteria and fungi have huge
differences in their structures and each of them respond differently to protein
extraction, an optimized protocol should be used for each type to reach the maxi-
mum Yyield. Using phenol extraction to remove the humic acid that sometimes
impacts highly complex samples is another example of tailoring the protocol to the
situation which is an essential step for metaproteome analysis.

5.7.2 Sample Preparation

The next step is included because all detergents used during extraction and any
other interfering compounds should be removed before digesting the proteins. After
microbial population protein extraction, those components that might interfere in
enzyme activities during isolation or MS analysis should be eliminated. To do this,
a classic action trichloroacetic acid, acetone, or ammonium acetate/methanol [19,
22, 28] is added to the protein extract. The protein plate can be solved in a buffer,
which is used in the later steps, but a considerable portion of protein will be lost due
to aggregation during this procedure. Another suitable method pursued for gel
digestion of the extracted protein is one-dimensional electrophoresis (1-DE) that
causes the interferer components to be trapped in the gel matrix and allows for
categorization of samples in gel slices [22]. This method is efficient, but it is also
time consuming and has a low level of reproducibility. The novel alternative is
represented through the filter-aided sample preparation (FASP) method in which
enzymatic cleavage and clean up occurs in a centrifugal filter with a high molecular
weight cut off [29]. This method is very suitable for environmental samples,
especially for those with low amounts of protein [30].

5.7.3 Pre-fractionation

Pre-fractionation should be done on peptides and proteins before MS detection to
decrease sample complexity and increase analysis depth. This improves the extent
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of information achievable by shotgun MS analysis. This has been accomplished in
previous metaproteomic studies by protein fractionation (mainly by 1-DE and
GELFtEE approaches) [28, 31] and/or peptide level (most commonly by means of
two-dimensional liquid chromatography (2D-LC). However, all of these useful
methods required extensive laboratory effort, as well as increasing challenges in
analytical reproducibility. In particular, 2D-LC tandem mass spectrometry
(MS/MS) has very remarkable analysis depth and is technically demanding, but,
above all, requires long processing times for a single sample (22 h in a typical
experimental setting for metaproteome samples) [32, 33]. Recently, an approach
has been described as single-run nanoLC-MS/MS, enabling the identification of
several thousands of proteins per run from different types of samples [34-37]. After
separation, computational analysis should be done on the acquired data. In the case
of a fully sequenced organism’s proteins identification, it is done with comparison
to the peptide fingerprints in data banks. But in species without a sequenced gen-
ome, protein identification can be done with peptides and their MS/MS fragments if
there is high homology to known proteins, or in the case of low homology, with
peptides which are sequenced with MS and show good homology with published
sequences. Routinely, this identification is done with algorithms like XI tandem
[38, 39].

Standard banks for protein identification include the National Center for
Biotechnology Information (NCBI) [40], UniProt/SwissPort and UniProtkB/
TrEMBL [41]. Depending on the metaproteome, more specific databases or sear-
ches against metagenomes of the same samples can result in further protein identifi-
cation [42]. The difficulty in characterizing the metaproteome in comparison to
simpler proteomic investigations that use defined culture media is that the complex
metaproteome’s taxonomic composition is unknown and can result in increases in
false positives. In this regard, decreasing the size to only the known sequences pro-
vides a viable option [43]. In this way, some of the false positives will be reduced and a
wider range of proteins will be identified. The next step is protein identification based
on the homology of two peptides [44], however, in the case of high resolution MS
data, using one peptide is also acceptable [45]. By using multiple algorithms, we
increase the number of correctly identified peptides and proteins. Even with the best
algorithm, only the proteins with corresponding sequences are covered in a single
database. To solve this matter, we can use de novo sequencing of peptides using
acquired spectra and identify proteins using a basic local alignment tool based in Ms.
A complication arises because de novo results’ evaluation requires manual inspection.
Consequently, samples can be more directly analyzed using metagenome sequencing.
The likelihood of a single identification can be improved by acquiring meta infor-
mation concerning taxonomy and function from repositories after successful protein
identification. Additionally, engaging similar peptide sets [33], one shared peptide
[46] or sequence similarity comparisons can be the basis of redundant protein iden-
tifications due to similar peptides from homologous proteins. At last, taxonomy of
protein can be redefined by the common ancestor taxonomy of all proteins in one
group that permits a reliable phylogenetic assignment of metaproteins avoiding risky
assignments_of species or, strains. To_ensure an even more reliable study, we can
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visualize taxonomic composition in a Krona plot, which is based on known peptides or
spectra from the National Center for Biotechnology Information taxonomy [47].
Species richness, the overall community organization and their interacting
dynamics can be calculated in a taxonomic profile comparison from different
samples or time points. This has been extensively discussed in the concept of
Microbial Resource Management. It is beneficial to shift to protein functions using
overview plots, such as a Voronoi Treemap [48] or a common pie chart, based on
gene ontologies or UniProt keywords [41]. Assignment of identified proteins to
biochemical pathways demands even more importance. By using KEGG (Kyoto
Encyclopedia of Genes and Genomes) ontologies or enzyme commission numbers a
direct mapping to MetaCyc patH pathway [49] or Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways can be achieved. Proteome studies often result in
long lists of up regulated and down regulated proteins confirmed by statistical tests.

5.8 Novel Applications of Metaproteomics

In an agricultural context, microorganisms in the plant rhizosphere and phyllo-
sphere can be artificially manipulated to increase agricultural production in an
environmentally sound manner [50]. Plant microbial communities are predicted
based on the knowledge obtained from plant-microbial interactions. Therefore, a
comprehensive understanding of the phytobiome enables us to answer several
fundamental questions in the areas of plant pathology, crop physiology and
microbial biology. Not surprisingly, understanding the mechanisms by which the
phytobiome supports plant health and productivity have gained a lot of interest.
These studies highlight the power and potential of metaproteomics to characterize
the function and structure of plant-associated microbial communities [51]. Despite a
limited number of publications on plant microbial metagenomics, metatranscrip-
tomics, and metaproteomics, these data have changed our understanding of the
function, structure, and population dynamics of the phytobiome.

It is known that the structure and populations of plant-associated microbial
communities have effects on plant growth and health by influencing the outcome of
pathogen infection. Metaproteomics provides a useful tool for a comprehensive
understanding of the phytobiome by utilizing plant-associated microbial commu-
nities in support of plant health against insects and diseases. Metaproteomics also
sheds light on the impact of humans on the environment and agriculture. For
instance, the release of transgenic plants into fields has a direct impact on the
properties and functions of soil and plant-associated microbial communities can be
monitored by metaproteomics [21]. Some of these recent studies are shown in
Table 5.1.
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Table 5.1 Recent applications of metaproteomics approach in the field of plant sciences

Plants

Comment

References

Leaves of soybean, clover and
Arabidopsis thaliana

Identification of community members
that are responsible for providing energy
and transport processes

[66]

Different crop rhizospheric soils
including rice, sugarcane,
Pseudostellariae heterophylla,
Rehmanniae sp., tobacco

Detection of several metabolic pathways
such as the defense machinery, energy
production, protein biosynthesis and
turnover, and secondary metabolism by
developing an optimized extraction
method named C/S-P-M

[67]

Phyllosphere plus rhizoshere
microbiome of rice

Detection of 4600 proteins that were
similar in phyllosphere in different
geographical conditions but in the
rhizosphere observed various proteins
that interfered in stress responses and
one carbon compound cycle

[68]

Soil of Rehmannia glutinosa (herbal
medicine) under consecutive
monoculture

Identification of plants, bacteria and
fungi proteins mainly involved in
carbohydrate and energy metabolism,
amino acids metabolism and
stress/defense response

[12]

Rhizosphere of lettuce (Lactuca
sativa)

Revealed higher amount of proteins
related with virulence determinants,
energy metabolism and stress/defense
response in presence of pathogenic strain
of Fusarium oxysporum that could be
related to the interaction of the microbial
consortium to this fungus

[69]

Rhizosphere of ratoon sugarcane and
plant sugarcane

Demonstrated that ratoon sugarcane
induced significant changes in soil
enzyme activities and the catabolic
diversity of microbial community, and
that the expression level of soil proteins
originated from plants, microbes and
fauna. Also reported that 24.77 % of soil
proteins are derived from bacteria and
most of the microbial proteins were
involved in membrane transport and
signal transduction

[70]

5.9 Using Metaproteomics to Construct Metabolite
Pathways and Environmental Signals

Soil represents a favorable environment for a wide range of microorganisms
including algae, bacteria, and fungi. Almost all of the chemical changes that take
place within the soil involve the active contribution of soil microflora. They mainly
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participate in carbon and nitrogen cycling, nutrient acquisition and soil formation
processes, which are necessary for plant growth and survival. In addition, plants
have profound effects on soil microbial communities, especially those colonizing
the rhizosphere. This is because of the great carbon input to soils by plant root
exudates. Furthermore, plants are immobile organisms that are often confronted
with unfavorable conditions (e.g., salinity, drought, pathogen attacks). In order to
evade abiotic and biotic stresses, one plant strategy is to establish associations with
beneficial microbial organisms. One of the most complex tasks for a plant is to
distinguish between mutualistic partners and parasites, especially in view of the fact
that symbiotic and parasitic interactions share many common signaling pathways.

Recent studies have increased our understanding of phytobiome profiles and
implications of the plant-associated microbial communities within the soil [4].
Metaproteomics data combined with data obtained from plant physiology, micro-
bial biology, genomics, and computational biology are used to construct metabolic
pathways. Therefore, we are able to address metabolic networks and their regulation
on whole-plant microbial communities [52]. The metabolic and regulatory networks
and biosynthetic capabilities of plant-associated microbes in real environments can
be employed for biotechnological applications.

Newly initiated lines of research seek to investigate the phytobiome in various
environments [53]. Understanding the influence of environmental conditions on the
dynamics and activities of the phytobiome help in designing strategies which
control emerging plant pathogens. The discovery of new antibiotic compounds and
the development of new disease control strategies can be used to reduce pesticide
use or to control diseases for which no other effective control approach exists [54].

5.10 Engineering Plant Microbial Communities

As we have already explained, the phytobiome in its natural state consists of a
community of microbes that exist exogenously and endogenously in various forms
within a plant. These associations appear symptomless at first glance, possibly
representing a series of mutualistic or symbiotic relationships. Consistently,
experiments performed under laboratory conditions revealed that the structure and
components of the phytobiome provide strategic advantages to the plant, such as
enhanced mineral acquisition and indirect pathogen protection. However, the role
and function of the phytobiome is still largely unknown. The functional diversity
and dynamics of microbial communities have recently been studied. Plant volatiles
play an important role in microbe-microbe communications and can be studied by
the metaproteomics approach. Engineering microbial communities can be part of
the solution for plant growth and improved tolerance to harsh environmental
conditions. Plant-associated microbial communities improve plants’ responses to
unfavorable conditions. Therefore, understanding the molecular basis of plant
adaptations to stress conditions induced by microbial communities has received
increased. attention. However, the understanding of molecular and physiological
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mechanisms of plant adaptation to stress conditions gained through the association
with microbial communities is still rudimentary. Through data obtained from
investigating metabolic and signaling networks in controlling microbial commu-
nities within natural habitats, we advance our knowledge toward inducing tolerance
to environmental stressors. Metaproteomics data holds the promise of enabling us to
engineer metabolic junctions between plants and microbes to cope with environ-
mental stress and increase plant yield and quality.

5.11 A Plant’s Beneficial Microbes Help Them
to Cope with Environmental Stresses

Drought and salinity are the major limiting factors of crop production worldwide. In
order to establish sustainable agriculture, the application of symbionts can be a
good alternative as symbionts not only enhance crop yields, but they can also
increase plant tolerance against various stress conditions through adapting the
plants’ response to their environment. Research on the symbiont helps scientists to
understand the stress adaptation mechanisms in plants and can lead us in designing
better strategies to reduce plant loss due to environmental stress. Several
proteomic-based investigations have provided new insight into host adaptation to
environment conditions through the symbiotic interaction with beneficial
microorganisms. In order to unveil the molecular mechanisms that enhance the
plant’s tolerance of salt and drought, we used proteomics to identify responsive
proteins involved in plant stress tolerance.

Piriformospora indica is a root-interacting fungus, capable of enhancing plant
growth by increasing plant resistance to a wide variety of pathogens and improving
plant stress tolerance to extreme environmental conditions. The broad-spectrum
root-colonized endophytic P. indica confers various beneficial effects to host plants,
such as growth promotion, seed yield increase, abiotic stress tolerance and biotic
stress resistance. Detailed understanding of how the symbiotic relationships are
capable of enhancing the plant’s adaption can lead to the development of sus-
tainable agriculture.

We established proteomic approaches in order to unravel the molecular basis of
enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by P. indica. We
identified 51 proteins involved in different functional categories including photo-
synthesis, cell antioxidant defense, protein translation and degradation, energy
production, signal transduction and cell wall arrangement, and taken together, show
that P. indica altered the host physiology to cope with salt stress [55]. We dis-
covered the link between the expression of several novel proteins that lead to host
adaptation against environmental stress [55, 56]. According to our results, it is
likely that P. indica induced systemic response to salt stress by changing the
physiology and proteome of P. indica-colonized barley plants, despite the fact that
the fungus does not colonize plant leaves. Our research provides a deep
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understanding of how symbionts protect their plant hosts against the detrimental
effects of soil salinity. We proposed that P. indica mediated stress tolerance through
photosynthesis stimulation, improved energy release, and an enhancement in
antioxidative capacity in the colonized plants [55, 56].

5.12 Current Limitations and Future Challenges
of Metaproteomics Applications

In the last few years, much effort has been applied to understanding the multifaceted
mechanisms of symbiosis through comparative proteomics of the whole plant. The
analysis of cellular and subcellular proteomes clearly extends the depth of the
proteome to be investigated [57]. It assists in targeting specific, often
low-abundance, proteins by eliminating most other proteins from the whole plant
proteome [58]. In contrast, only a few proteomic studies have been undertaken to
study the symbiotic relationships at either the host specific tissue or cellular levels
[59, 60]. The cellular proteome of membrane-bound proteins is important in
understanding the initial cellular events that occur during symbiotic interactions
[61-63]. It provides further insight into cell signaling events for specific tissue, cell
type or organelles and thus increases the resolution of proteome profiling [64].

Applying new strategies to reduce the damage of environmental extremes
through the application of microbial communities holds great potential. However,
the analysis and monitoring of the real impacts require new approaches, which
currently pose challenges to researchers. Because plant metaproteomics is a novel
field of research, a standardized protocol has not yet been established [65]. The
main goal should be to obtain novel insights into the molecular interactions existing
between plant genomes and their associated phytobiome. The ultimate goal will be
to apply microbial communities to improve environmental quality, crop production
and ecosystem sustainability.
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Chapter 6
Proteomics in Energy Crops

Shiva Bakhtiari, Meisam Tabatabaei and Yusuf Chisti

Abstract The increasing global demand for energy, diminishing fossil fuel
reserves, and the rise in greenhouse gas emissions created by their use, have fuelled
efforts to identify renewable energy sources that are more sustainable and envi-
ronment friendly. One alternative is to develop plants that are more efficient in
utilizing solar energy and converting it into biomass which can be used as feedstock
for biofuel production. The development of such improved bioenergy crops
requires the use of more advanced biotechnological applications such as pro-
teomics. This chapter will examine the use of proteomics in bioenergy crops in
order to find quicker and more effective pathways of modifying them for optimum
fuel production.
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6.1 Introduction

Bioenergy is a renewable form of energy. Plants and certain photosynthesizing
microorganisms use sunlight to convert inorganic carbon and water to biochemical
energy, the ultimate source of all bioenergy. Unlike other crops, bioenergy crops are
grown specifically for energy. At present, bioenergy crops are exclusively higher plants.

Plant biomass can be used directly as fuel, or converted to biochar, to generate
steam, heat and electrical power. Biomass and other plant chemicals (starch, sugars,
lignoceullulose, oils) can be converted to various type of fuels including fuel
alcohols (bioethanol, biobutanol), biodiesel and biogas. Production of some of these
biofuels is well-established. Technology for making bioethanol from lignocellu-
losics is developing [1-3]. Plant biomass and other biochemcials can be used to
make fuels that are currently obtained from petroleum feedstock. For example,
diesel, gasoline, and kerosene can be made from biomass and biochemicals using
chemical processes that are being developed.

Microbial biofuels are in development [4, 5], but are not likely to be commer-
cialized in the near term [6]. This notwithstanding, photosynthesizing microor-
ganisms can produce large quantities of biomass. Production of microbial biomass
and chemicals can be independent of the weather and availability of arable land.
Depending on the culture conditions, this biomass may be rich in starch, oils or
other useful chemicals. Production of some plant-derived biofuels also depends on
microbial action. For example, bioethanol and biobutanol produced by microbial
action on plant-derived sugars.

The established and emerging biofuel crops are of three types. (1) Sugar and
starch crops such as sugarcane, sugarbeet, corn (maize), wheat and cassava. Sugars
and starch from these can be readily converted to ethanol and other fuel alcohols via
microbial fermentation processes. (2) Oil crops such as oil palm, soybean, canola,
sunflower, jatropha and camelina. Oils from these can be readily converted to
biodiesel. (3) Lignocellulosic biomass crops including some grasses (e.g. switch-
grass) and trees (e.g. poplar) that can generate relatively large quantities of biomass
rapidly with a low input of resources. This biomass may be used to raise steam, or
converted to fermentable sugars through methods now being developed.

Some of the above mentioned energy crops (e.g. corn, wheat, soybean) are also
important food and feed crops. With limited arable land, water and fertilizers,
diverting these crops to biofuels will certainly affect accessibility of food. Other crops
such as Jatropha and switchgrass may be grown on marginal land not suited to food
production. Biofuels derived from non-food crops are increasingly favored, but a full
assessment of their long-term sustainability is required. Increasing the cropping area
through deforestation and displacement of other natural ecosystems is not an option.

Improving energy yield and productivity of the bioenergy crops requires an
indepth understanding of their proteomics: what proteins are being produced and
how they impact metabolic function. This information is necessary for crop
improvement and developing traits that affect survival under adverse conditions (e.g.
drought, frost, temporary flooding, pest infestations). Although the proteomics of the
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major bioenergy crops are barely understood [7], progress is being made as reviewed
in this chapter. Proteome maps are typically prepared using gel electrophoresis,
especially two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Mass
spectroscopic methods are generally used for identifying the proteins.

6.2 Starch and Sugar Crops
6.2.1 Corn (Zea mays)

Corn, after rice and wheat, is the most widely used food grain. Nearly a third of the
global population subsists on corn [8]. Corn is a source of corn oil, a widely used
food oil. Also, corn is a source of other industrial chemicals [9] and biofuels derived
from corn starch [10]. Corn can be used as a bioenergy crop in two ways: the grains
can be used to produce starch-based ethanol through processes known as dry or wet
milling, and the corn stover has the potential of being converted to lignocellulosic
biofuels through biochemical or thermochemical processes (Fig. 6.1a).

Biology and genetics of corn are well-known as it has long served as a model for
studies of monocots [11]. Corn yield and biomass composition in relation to pro-
duction of fuels have been discussed [12]. Genetic engineering approaches to
improve bioethanol production from corn have been discussed [13].

Significant information exists on proteomics of corn (Table 6.1). Proteome
profiles are available for several tissues including endosperm [14], leaf [15], root
hair [16], primary root [17, 18], primary root pericycle [19], rachis [9], and egg cell
[20]. Proteome associated with starch granules and seed flour [21, 22] is known.

Formiatatio Starch-based
ermentation Ethanol
Thermochemical Lignocellulosic
Process Biofuel
Fermentation,
Juice Distillation Et]‘lﬂl‘lﬂl
& Hydration
Chemical
Stalk Bagasse Production,
Electricity, & Heat

Fig. 6.1 a Biofuel production pathways from, a corn and b sorghum
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Table 6.1 Proteomic studies in corn®

Tissue Treatment/stress References
Leaf, bundle sheath - [12]
Seedling/chloroplast - [26]
Leaf base, tip/chloroplast - [27]
Root, hairs - [28]
Pollen, pistil - [29]
Basal region of seedling leaf/nuclear - [30]
Endosperm, embryo - [31]
Embryos - [32]
15-day-old plants Drought [33]
Embryos Desiccation [34]
Anther Cold pretreatment [35]
Pollen coat - [36]
Seedling/chloroplast Salt [37]
Root Salt [38]
Seedling Nitric oxide/salt [39]
Embryos Salt [40]
Seedling Sugarcane mosaic virus [41]
Leaf Flooding [18]
Seed flour - [29]
Leaf Salicylic acid, abscisic acid [42]
Leaf - [43]
Seed - [44]

“Chakraborty et al. [11], Copyright (2016), with permission from Elsevier

Subcellular proteome studies have been reported on mitochondria [23], root cell
wall [18], chloroplast [24, 25], and stroma, membranes and nucleoids [9].
Developmental proteomics and stress proteomics have been discussed.

6.2.2 Sugarcane (Saccharum officinarum)

Sugarcane is a perineal grass. It is widely cultivated in tropical and subtropical
regions mainly for the production of sugar [45] and to a lesser extent bioethanol.
Sugarcane is probably the most efficient bioenergy crop for tropical and subtropical
regions [46] and bioethanol from sugarcane is one of the best established biofuels
[47]. The use of genetically modified sugarcane with improved traits for bioenergy
production has been suggested [48, 49], but limited genomic information [7, 50]
hinders progress. A lack of genome data has affected progress in proteomics [S1].
The few studies have mostly focused on the proteins extracted from the leaf and
root tissue [50]. Proteomics of sugarcane stalk, the major source of sugar, have

e i proteome map of sugarcane stalk has been
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published [2]. Identification of the proteins involved in sugar metabolism and
elucidation of their functions could be the basis of improving sugar yield and
therefore the yield of bioethanol from sugarcane. The sugarcane proteomics have
been reviewed by [6].

6.2.3 Sugar Beet (Beta vulgaris)

Sugar beet is a source of sucrose for conversion to bioethanol by fermentation.
A number of proteomic studies are available on sugar beet [52-56].
A comprehensive proteome-wide characterization of sugar beet seed and seedlings,
including the root, stem, cotyledons, and perisperm was reported byCatusse et al.
[53]. Other studies focused on abiotic stresses such as drought [54], nutritional
deficiencies [52] and salt tolerance [53, 55]. Proteomics of sugarbeet response to
pathogens have been discussed [57, 58].

6.2.4 Wheat (Triticam spp.)

Wheat is a major food crop. It is a candidate crop for production of bioenergy,
particularly in Europe. Wheat proteomics have received considerable attention
(Table 6.2). Proteome reference maps have been made for wheat leaves [59], roots
[60], endosperm [61], and amyloplasts [62]. Effects of various stress factors,
radiation and toxic ions on wheat proteome have been reported [11].

6.2.5 Barley (Hordeum vulgare)

Barley is a major cereal crop grown mainly for feed and malting. Barley proteomics
have spanned diverse areas (Table 6.3). Studies have addressed: (1) changes in
protein abundance in grains of different barley varieties during development;
(2) changes in leaf and shoot proteins in response to heat stress; (3) protein sig-
natures associated with malting quality; (4) changes in root and shoot proteomes in
response to nitrogen deficiency; (5) changes associated with radicle elongation in
germinating seeds; (6) proteomics of cadmium accumulation in varieties with dif-
fering levels of cadmium tolerance; (7) effects of drought stress on leaf proteomes;
(8) proteomics of leaf rust infection; (9) salinity stress responses; and (10) enhanced
salt tolerance through mutualistic interactions with the root fungus Piriformospora
indica. Functional proteomics of barley chloroplasts [107] and the proteomics of
stress response in barely [108] have been reported.
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Table 6.2 Proteomic studies in wheat®
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Tissue Treatment/stress References
Spike development Cold [63]
Leaf Drought, salinity [64]
Peduncle Drought, oxidative [65]
Root Flooding [66]
Developing grain - [67]
Seed - [68]
Leaf Salt [68]
Leaf Salt [69]
Seed Salt [70]
Mitochondria Salt [71]
Root Salt [72]
Seed Salt [73]
Seed Salt [74]
Leaf Drought [75]
Grain Drought [76]
Leaf Drought [77]
Grain Drought [78]
Anthesis period Drought [79]
Seed Drought [80]
Seed High temperature [81]
Grain High temperature [82]
Leaf Drought [83]
Grain Drought [84]
Flour - [85]
Gluten proteins - [86]
Grain - [871]
Root Abscisic acid [88]
Leaf - [89]
Leafs and roots Copper [90]
Root Aluminum [91]
Seed Cadmium [92]
Seed Enhanced UV-B radiation [93]
Seed endosperm — [94]
Flour - [95]
Crown Low temperature [96]
Leaf Low temperature [97]
Grain - [98]
Grain - [99]
Grain - [100]
Leaf Drought [101]

(continued)
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Table 6.2 (continued)

Tissue Treatment/stress References
Mature embryos Late embryogenesis [102]
Leaf Low temperature [103]
Leaf - [104]
Seed Low temperature [105]
Crown Low temperature [106]

“Chakraborty et al. [11], Copyright (2016), with permission from Elsevier

Table 6.3 Proteomic studies in barley®

Tissue Treatment/stress References
Roots and shoots/33 day seedlings Nitrogen deficiency [109]
Four extended leaf seedlings, leaf Drought [110]
Leaf sheath/14 day seedlings Salt/fungal infection [111]
Seed (review) Grain filling/maturation [112]
3 cm seedling roots Nuclei isolation [113]
Leaf/24 day hydroponic seedlings Protein turnover [114]
Leaf/first leaf stage seedlings Leaf rust infection [115]
Leaf Drought/fungal infection [116]
Malts Malt filterability [117]
Leaf/7 day seedlings UV-B radiation [118]
Shoots/3 day old seedlings Drought [119]
Leaf from seedlings Salinity [120]
Grains harvested/mature field-grown plants Cadmium [121]
Leaf, roots/seven day hydroponic seedlings Salt [122]
Grains harvested/mature plants Salt [123]

“Chakraborty et al. [11], Copyright (2016), with permission from Elsevier

6.2.6 Sorghum (Sorghum bicolor)

Sorghum bicolor is a C4 grass. It is among the top five of the economically
important cereal crops [124]. Sorghum grain is a source of starch and its stalks
contain sugar-rich juice. The soluble sugars in its stalk can easily be converted to
ethanol using currently available, conventional fermentation technology (Fig. 6.1b).
Sorghum is receiving much attention as a feedstock for bioethanol [125, 126]. It has
the potential to provide more ethanol per hectare than corn. Sorghum genome has
been fully sequenced, but studies of its proteome are limited [51]. Proteins secreted
into the medium by sorghum cells grown in suspension culture have been studied
[51]. Proteomics of salt stress responses [127] and response to draught stress [128]
have been reported. Grain proteomics of certain sorghum variants have been dis-
cussed [129]. Functional distribution of proteins in sorghum leaf extracts is shown
in Fig. 6.2. Leaf proteomics mostly relate to carbohydrate metabolism as leaf is
e i ia_photosynthesis.
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Fig. 6.2 Functional distribution of sorghum proteins in leaf extract. Based on [51]

6.3 Edible Oilseed Crops

6.3.1 QOil Palm (Elaeis guineensis)

Palm oil accounts for nearly half of the edible oil used worldwide [130]. It is also a
main feedstock for the production of biodiesel. Apparently the first proteome
analysis of the oil palm mesocarp was done only recently [131]. The aim was to
identify the proteome changes associated with fruit maturation and oil content of
palm fruits. Proteins from several important metabolic processes including starch
and sucrose metabolism, glycolysis, pentose phosphate pathway, fatty acid
biosynthesis, and oxidative phosphorylation were found to be differentially
expressed during the different stages of fruit development after pollination. Other
work has focused on the proteome of the oil palm leaf infected with Ganoderma
boninense, a fungus that devastates oil palm plantings in Southeast Asia [130].

6.3.2 Rapeseed (Brassica napus)

Rapeseed (Brassica napus) is a source of a normally unpalatable (bitter) vegetable
oil. Canola, a cultivar of rapeseed, produces edible oil that is low in glucosinolates
(the bitter component of rapeseed oil) and erucic acid, a toxic substance. Canola oil
is believed to be one of the healthiest of the vegetable oils. Canola oil is being
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commercially used to produce biodiesel. The entire genome of B. napus has been
sequenced and this has helped with its proteomics studies.

Proteome-level changes in two different B. napus lines in response to the fungal
pathogen Alfernaria brassicae have been reported [132]. The dynamics of protein
expression during pollen germination in Canola have been published [133]. Other
studies have looked at the effects of different stress factors on the proteome of
Canola. Effects of high temperature stress on proteome of early seedlings of Canola
have been discussed [134]. Effects of salinity stress on proteome of Canola leaves
[135, 136] and seedlings [136] have been reported. Proteomic analysis of Canola
roots inoculated with bacteria and subjected to salt stress has been reported [137].

6.3.3 Sunflower (Helianthus annuus)

Sunflower is a source of a widely-consumed and healthy vegetable oil. The average
annual sunflower oil yield is about 673 kg per hectare. Sunflower oil can be con-
verted to biodiesel, but it is a more expensive feedstock compared to soybean and
Canola oils. Proteomics of sunflower have received some attention [138]. Effects of
drought stress [139], metal ion stress [140, 141], and salt stress [142] on proteomics
of mostly the leaf tissue have been reported.

6.4 Non-edible Oil Crops

6.4.1 Jatropha (Jatropha curcas)

Jatropha curcas L. is a shrub that grows in arid and semi-arid areas. Jatropha seeds
contain up to 40 % oil [143]. Production of Jatropha [144] and the biodiesel made
from its oil [144, 145] have been reviewed in the literature.

Jatropha oil is inedible. The oil in Jatropha seeds is mostly stored in organelles
known as oil bodies. Consequently, these oil bodies have been the focus of pro-
teomic studies [146]. The oil body proteome of three varieties of Jatropha seeds has
been discussed [146]. Oleosin and caleosin have been found to be the most
abundant structural proteins in oil bodies [146].

The differential proteome of endosperm and embryo of mature Jatropha seeds
has been reported [147]. The proteome profiles were found to be quite similar. The
major groups of differential proteins were those associated with metabolism (25 %)
and disease/defense (18 %) [147]. A detailed analysis of the Jatropha endosperm
proteome of five different developmental stages has been published [148]. Proteome
associated with stress responsive of Jatropha roots has been reported [51].
Information is available on the enzymes involved in fatty acid biosynthesis and
their respective genes [51].
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6.4.2 Camelina (Camelina sativa)

Camelina sativa, from the Brassicaceae family, is an oilseed plant [149] suited to
relatively cold climates. Camelina oil is a potential biodiesel feedstock. Camelina
seeds have an oil content of about 36—47 % [150]. Under optimal condtions, the oil
yield may be as high as 420 kg/ha, but data are limited. Camelina oil contains more
than 90 % unsaturated fatty acids [150].

Although the genome and transcriptome maps for Camelina are available [151],
not much is known about its proteomics. Nearly 1500 proteins have been reported
in Camelina seeds [152]. Studies have been published of the effects of overex-
pression of the Arabidopsis G-protein y subunit 3 (AGG3) gene in Camelina on its
proteome [152]. AGG3 is believed to regulate a range of fundamental growth and
developmental pathways and has the potential to increase seed yields.
Overexpression of AGG3 increased production of the proteins involved in primary
and secondary metabolism and those involved in abscisic acid related responses
[152]. The AGG3 protein was found to have a role in the regulation of oxidative
stress and heavy metal stress tolerance [152].

6.5 Grasses

6.5.1 Switchgrass (Panicum virgatum)

Switchgrass (Panicum virgatum) is a perennial grass. It is a promising source of
lignocellulosic biomass [153, 154]. Proteome analysis of the endomembrane of
developing switchgrass coleoptiles (the protective sheaths that cover the growing
shoot in grasses) identified 1750 unique proteins [155]. The relevant data are
available from the ProteomeXchange (identifier PXD001351; [155]). This appears
to be the only proteomic study relating to switchgrass.

6.5.2 Miscanthus (Miscanthus spp.)

Miscanthus is a perennial grass. It is a potential source of lignocellulosic biomass
for combustion and conversion to fuels such as bioethanol [156]. Miscanthus x
giganteus hybrid has been claimed to be more productive than the other Miscanthus
species [157].

Not much data exist on nucleotide and protein sequences of Miscanthus [158].
A comprehensive proteomic study of Miscanthus sinensis leaves has provided a
reference map [158]. The effects of heat stress on this reference map have been
reported [158]. Proteome of Miscanthus sinensis leaves and roots exposed to
antimony stress has been published [159]. Proteome changes in roots under
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chromium stress have been reported [158]. Chromium toxicity is linked to heavy
metal tolerance and senescence pathways [160]. Chromium is known to affect
vacuole sequestration, nitrogen metabolism and lipid peroxidation [160].

6.6 Tree Crops
6.6.1 Poplar (Populus spp.)

Trees of the genus Populus grow rapidly and, therefore, are among most attractive
of the woody plants for the production of biofuels. Poplar wood is high in cellulose
and low in lignin. Poplar was the first tree to have its genome sequenced [161, 162]
and many proteomic studies relate to it.

A comprehensive proteomic analysis provided reference maps of eight poplar
organs and tissues and a functional characterization of some proteins [162]. The
effects of drought stress on proteome of poplar roots and leaves were reported
[162]. Proteomes of poplar seeds with different vigor have been reported [163].
Sixty-five proteins relating to seed vigor were identified [163]. Most of these related
to metabolism including protein synthesis and destination, energy generation, cell
defense and rescue, and protein storage. These proteins accounted for 95 % of all
the identified proteins [163]. The abundance of all these proteins was found to
decrease as the seeds aged. This led to the conclusion that seed vigor (aging) was an
energy-dependent process which required protein synthesis and degradation as well
as cellular defense and rescue [163]. Proteomic analyses of poplar response to
cadmium stress [164] and drought stress [165] have been reported. Protein profiles
of Populus vascular tissue [166, 167] and chloroplast have been reported [168].

6.6.2 Willow (Salix spp.)

Willows comprise some 400 species of deciduous trees and shrubs. Rapid growing
willow varieties are a good source of biomass for making fuels. Only a few pro-
teomic studies relate to willow species.

Proteomics of salt stress responses in Salix matsudana Koidz, or Chinese
Willow, have been discussed [169]. Proteins extracted from roots, stem and leaves
that had been subjected to salinity stress were identified. Most (~54 %) of the
differential protein spots were from roots. Around 24 % of the differential protein
spots were from leaves and the rest were from the stem. A majority of these salt
stress-responsive proteins were organ specific. The identified proteins were found to
be involved in 12 metabolic pathways and processes [169].

Proteomic responses of different willow clones (Salix fragilis x alba) to sedi-
ments contaminated with heavy metals have been reported [170]. The low biomass
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producing clones subjected to heavy metal stress were as able to maintain the
cellular activity as the high biomass producing clones, but had a less pronounced
oxidative stress response [170].

6.7 Photosynthetic Microorganisms: Cyanobacteria
and Microalgae

6.7.1 Cyanobacteria

Cyanobacteria are the only prokaryotes capable of oxygenic photosynthesis [4].
Some cyanobacteria produce large amounts of oils that can be converted to various
fuels. Proteomic research on this group has mostly revolved around the model
organism Synechocystis sp. PCC 6803. Organelle composition and stress responses
have been the focus of this research. Proteomes of the outer membrane [171], the
plasma membrane [172] and thylakoid membranes [173] have been characterized.
Proteomics of high salt stress [174] and heat stress [175] have been the most
commonly studied.

A comprehensive proteomic analysis Synechocystis sp. PCC 6803 characterized
responses to 33 environmental factors including nutrient (nitrogen, iron, sulfate,
phosphate) deprivation, varied trophic growth modes, cold stress and salt stress
[176]. Proteomics of hexane resistance in Synechocystis sp. PCC 6803 have been
reported [177] with the objective of investigating the low tolerance of this
microorganism to alkanes.

6.7.2 Microalgae

The availability of genomic and transcriptomic data for several microalgae has
helped with their proteomics analysis. Most studies have focused on the model
green alga Chlamydomonas reinhardtii. Some of the key findings are reviewed
here.

Proteomics of many organelles of C. reinhardtii have been characterized. This
includes proteomics of mitochondria, chloroplast ribosomes [178, 179], thylakoid
membranes [180], the light harvesting proteins [181-183], the eye spot [184] and
cytoskeletal organelles such as the centrioles [185] and flagella [186].

Proteomics of lipid accumulation and storage in microalgae have attracted
attention in view of the interest in fuels derived from algal lipids. Proteins asso-
ciated with the oil droplets in C. reinhardtii have been examined by high
throughput proteomics methods [187]. Proteomics have been used to identify the
proteins occurring in C. reinhardtii under anaerobic conditions as this alga pro-
duces hydrogen (a potential biofuel) gas in an anaerobic environment [188].
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Proteomics of the carbon concentrating mechanisms of C. reinhardtii have been
investigated [189] and proteome changes linked to various environmental stress
factors have received attention.

Proteomic studies have been reported on the model marine diatom
Phaeodactylum tricornutum. These studies related to mechanisms involved in lipid
accumulation in P. tricornutum under nutrient replete conditions [190] and under
nitrogen deprivation [191]. Genomes of relatively few microalgae have been
sequenced. Proteomics studies of such poorly characterized algae are few, but
attempts are being made to bypass this lack of genomic data.
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Chapter 7
The Proteome of Orchids

Chiew Foan Chin

Abstract Orchids are the most diverse species in the family of flowering plants.
Apart from its beautiful flowers that make it well known as an ornamental plant,
some orchids are known to have medicinal values and some can produce useful
products such as perfumes and flavouring essence. Many studies have been con-
ducted to elucidate the biological and molecular mechanisms in orchids. This
review takes a look at the use of proteomic studies conducted in various aspects of
orchid research in order to provide a more in-depth understanding on the biology of
orchids.

Keywords Orchids - Proteomics

7.1 Introduction

Orchids are highly priced ornamental plants due to the exquisite beauty of their
flowers. In the global floriculture trade, orchids, both as cut flowers and potted
plants, is the second most popular commodity after rose that contributes
multi-billion dollars to the floral industry. Orchid cut flower is estimated to com-
prise around 10 % of international fresh cut flower trade [1].

Much research effort has been put into enhance the value of orchid plants. More
recently, advance research tools available in plant science such as genetic engi-
neering, functional genomics, proteomics and metabolomics [2, 3] have been
applied to gain an in depth understanding of the orchid plants. This review will
focus on the use of proteomic studies on orchids.
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7.2 Uses of Orchids

Orchids are not only known as the queen of flowers, they have many other uses.
The scent of orchid flower is used as potential fragrance chemical components to
produce perfume while the pods of vanilla orchids are used for flavouring cakes, ice
cream and soft drinks [4]. They are also important for use in producing medicines
for treating different diseases such as asthma, arthritis, boils, blood dysentery, bone
fractures and sores. For example, the roots of Cypripedium pubescence contain
fixed oil, volatile oils, sugars, starch, resins and tannins, which are useful in treating
nervous irritability, spasm, fits and hysteria. The compounds extracted from the
leaves, flowers, roots or pseudobulbs of orchids have also been used as aphrodisiac,
bronchodilator, contraceptive or cooling agents [5].

7.3 The Orchid Botany

The Orchidaceae or commonly referred to as the orchid family is one of the world’s
largest plant family with a rich diversity of species. The orchid family comprises of
880 genera with an estimated number of species that ranges between 22,075 and
26,567. Orchids made up of approximately 30 % of monocotyledons or 10 % of all
the world’s flowering plants [6, 7]. The most common orchid species are Vanda,
Dendrobium, Cattleya, Cymbidium and Phalaenopsis. Over ecological time, orch-
ids have evolved to adapt and modify their features to take advantage of adverse
environmental conditions on earth. Therefore, to date, orchids can be found in most
habitats except in the deserts and Antarctica [8]. The tropical regions such as Asia,
Central and South America have the highest orchid varieties in the world.

7.4 Growth Habit of Orchids

Orchids have two distinct main types of growth habits namely, sympodial or
monopodial [9]. Sympodial orchids have a horizontal stem called rhizome at the
base of the plants (Fig. 7.1). As the thizome grows, it bends upward and form small
plants with leaves as well as flower scapes. These orchids form swollen shoots
called pseudobulbs, which are used for water and nutrients storage. Cattleya,
Cymbidium, Oncidium and Dendrobium are examples of sympodial orchids. While
rhizome and pseudobulbs are observed in sympodial orchids, these features are
lacking in monopodial orchids. Monopodial orchids have a single main stem where
a series of leaves are produced at the apical bud (Fig. 7.1). Nodes above each leaf
are where the roots and flower stems emerge. The stem may sometimes branch but
this occurrence is rare in most types of orchids. Orchids that exhibit this type of
growth habit include Phalaenopsis, Vandas and Vanilla. Besides distinct habits of
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Fig. 7.1 The differences between sympodial and monopodial growth habit of orchids (http://
WWwWw.aos.org/images/img_content/newsletter_issues/aug09.html

growth, orchids can also be classified as epiphytes, terrestrial, subterranean, or
lithophytes. Approximately 70 % of the orchid family are epiphytic while 25 % are
terrestrial and the remaining 5 % are either subterranean or lithophytes [10]. Most
of the tropical orchids are either epiphytic or lithophytic while the temperate orchids
are terrestrial.

7.5 Cytogenetics of Orchids

Orchidaceae has reported to have a high diversity of chromosome number [9]. For
example, the variations in chromosome number were observed within the sub-
families of Spiranthoideae (2n = 28, 36, 46, 48 and 92) and Orchidoideae (2n = 42,
44, 48, 80, 84, 168). The primary basic chromosome number of orchids has been
confirmed to be x1 = 7.

7.6 Genomic and Transcriptomic Studies in Orchids

Orchids are currently the angiosperm family with the most variable genome sizes,
with values varying up to 168-fold, ranging from 1C = 0.33 pg in Trichocentrum
maduroi to 55.4 pg in Pogonia ophioglossoides [11]. Recently, the whole genome
of the orchid, Phalaenopsis equestris (P. equestris) has been completely sequenced
[12]. P. equestris is known to be a popular ornamental plant with great commercial
features for floral industry. This orchid plant species also serves as an important
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breeding parent due to the many colours of its flowers. The availability of whole
genome sequence of P. equestris will open up a new vista for the research studies of
orchids.

In addition, transcriptomic databases of orchids are also available. OrchidBase
(http://orchidbase.itps.ncku.edu.tw/est/home2012.aspx) is a collection of EST
sequences derived from cDNA libraries constructed from ten Phalaenopsis orchids
and ten orchid species across five subfamilies of Orchidaceae namely,
Apostasioideae, Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae
[13]. Another orchid database is OrchidStra (http://orchidstra.abrc.sinica.edu.tw/
none/index.php), which is a database with transcriptomic sequences derived from
the Phalaenopsis aphrodite subsp. formosana using Roche 454 and Illumina/
Solexa platform [14]. OncidiumOrchidGenomeBase is an orchid database consists
of cDNA libraries for six different organs from the orchid plant namely, leaves,
pseudobulbs, young inflorescences, inflorescences, flower buds and mature flowers
(http://predictor.nchu.edu.tw/oogb/) [15].

7.7 Proteomic Studies in Orchids

The study of proteins derived from the full complement of the genome through
proteomic studies has provided an insight into the molecular and biochemical
mechanisms taking place in the biological systems of a cell or organism.
Nevertheless, the information on the proteomic studies in orchids is scarce and
under-represented. Most of the proteomic studies on orchids are on flower devel-
opment and tissue culture of orchids for mass production (Table 7.1). In addition,
another important aspect of orchid study i.e., on mycorrhizal fungi interaction has
been conducted. Other orchid studies involved proteomic technologies were on
drought stress and cell cycle regulation.

7.8 Reproductive Biology

The flower of the orchids is the most remarkable organ part of the plant. Not only
that the orchid flowers come in many colours, shapes and forms, it produces a
diverse range of floral odours in the mixtures of alkanes and alkenes to attract
pollinators [16]. Some orchids have this unique feature of displaying mimicry to
fool its pollinators to facilitate fertilisation. The flower of the orchids can mimic the
appearance of the female insect pollinator or produce the floral odour that mimics
the sex pheromones of the female pollinator to attract the male pollinator to visit the
flower. Such adaptations have contributed to the successful survival of the orchid
families through generations. Thus, the flower structure and the evolutionary
adaptation of orchids have been an intense area of study for the evolutionary
biologists.
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The flower of orchids has a unique structure. Apart from the sepal and petal,
there is a modified petal structure known as labellum. Being located close to the
pollens and with other decorative structures such as glands and distinctive col-
orations as well as sites of hydrocarbons synthesis, labellum could acts as insect
attractants for orchids [17]. Therefore, an in depth studies on labellum of orchids
has attracted much interests. Li et al. [18] used proteomic approach to investigate
the differential proteins between labellum and petals. A total of 30 differential
proteins were found and identified using MALDI-TOF/TOF (Table 7.1). The high
beta-glucosidase protein was found present in the labellum indicated its role in
floral odour emission and thus act as pollinator attractant. On the other hand, Tsai
et al. [19] used Yeast 2 hybrid system to study the protein-protein interactions of the
floral homeotic MADS-box protein complexes that determined the flower structure
of orchids.

The study of another evolutionary adaption of orchids on pollinator deception
was undertaken by Sedeek et al. [20]. Three Ophrys species namely, O. exaltata, O.
sphegodes and O. garganica were used in the study because the genus Ophrys were
known to be sexually deceptive orchids. The proteins were extracted from the
flower labellum tissue of Ophrys orchids. The proteins extracted from the flowers of
the three Ophrys species were analysed through LC MS/MS (Table 7.1) and
identified by comparing to the protein database created from the Ophrys floral
transcriptomic data. The proteins were found to map to enzymes such as
stearoyl-ACP desaturase (SAD) and b-ketoacyl-CoA synthase, which are involved
in hydrocarbon biosynthesis. In addition, Sedeek et al. [20] were the first research
group to have deposited orchid proteome onto PRIDE database [21] under acces-
sion numbers 27721-27914 and the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) under accession number PXD000069 (doi:
10.6019/PXD000069).

7.9 Micropropagation

Micropropagation is an important tool for mass multiplications of ornamental
plants. Since this technology is rather labour intensive and can be quite costly, it
would be only economically viable to apply the technology to high market value
plant such as orchids. In fact, orchid is the first plant that has successfully been
introduced in vitro more than 100 years ago [22]. Today, mass propagation of
orchids through tissue culture is established and well documented. However, due to
the genotype dependant nature of tissue culture, different species of orchids were
found to respond differently under different in vitro conditions [23]. Also, different
orchid species will pose different challenges in the in vitro environments. Hence,
investigations on different aspects of tissue culture such as browning of leaf
explants [23], initiation of shoot organogenesis [24] and callus development [4]
were carried out using proteomic technologies in order to provide a more in depth
analysis_to_the challenges.
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7.10 Mycorrhizal Interactions

Orchids are known to associate mutualistically with a heterogeneous group of fungi
known as the orchid mycorrhiza. One such association with the mycorrhizal fungi is in
the seed germination of orchids. Since the orchid seeds are minute and contain only a
few nutrients storage, its association with mycorrhizal fungi is important for the seed
germination and seedling development [25]. Using proteomic studies, Xu et al. [26]
found that the mycorrhizal fungus, Mycena dendrobii, enhanced stress tolerance and
promoted new root formation, which helped to improve the survival and growth of
Dendrobium officinale tissue culture seedlings. Another mycorrhizal interaction work
has been conducted by Valadres etal. [27]. In this study, 2DE LC MS/MS coupled with
iTRAQ has been used to isolate and identify proteins associated with the effect of
mycorrhizal fungi on the growth of Oncidium sphacelatum protocorms. The results
suggest that several phytohormone and secondary metabolites, reactive oxygen species,
and defense-related proteins may play a role in orchid mycorrhizal interactions.

7.11 Other Studies

Other proteomic studies in orchids include plant stress response and cell cycle.

Pandey et al. [28] used 2DE method to investigate the protein content of the leaf
of the orchids, Anoectochilus formosanus, under drought stress condition. The
study found that the protein content in the leaf was significantly reduced under
drought condition.

Since cell proliferation is governed by cell cycle regulation, which in turn
determines the growth and development of a plant, it is important to have a more in
depth understanding on the mechanisms of cell cycle regulation. Lin et al. [29] used
the yeast 2 hybrid protein-protein interaction system to study the major cell-cycle
regulators in the moth orchids, Phalaenopsis aphrodite. The study found that the
cell cycle regulator such as cyclin dependent kinase A is conserved. In addition,
expression of the major cell cycle genes was co-ordinately regulated during polli-
nation induced reproductive development.

7.12 Conclusion

Proteomics is a promising tool for the elucidation of gene products and provide the
closest molecular link with the phenotypic expression. The analysis of proteomics
will be enhanced with the availability of genomic and transcriptomic databases.
With the recent complete genome sequence of Phalaenopsis orchid [12], it is
therefore foreseeable that there will be more useful proteomic data of orchids being
generated in the near future.
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Chapter 8
Proteomic Tools for the Investigation
of Nodule Organogenesis

Nagib Ahsan and Arthur R. Salomon

Abstract Over the last decades, proteomics approaches are increasingly being
utilized to develop a more comprehensive picture of nodulation in many models
and/or economically important legume species. This chapter provides an overview
of recent developments in the application of proteomic technologies including
gel-based, gel-free, isotopic labeling for quantitation, and post translational modi-
fications that target proteomic analysis of nodule organogenesis. These approaches
provide a deeper understanding of protein regulation and interaction among the
possible pathways that are associated with nodulation in legume plants. In addition,
the challenges faced by proteomics in understanding nodulation are discussed, and
some possible future strategies for meeting these challenges are proposed.

Keywords Nodulation - Subcellular and tissue specific proteomics - Single cell
proteomics - Targeted proteomics

8.1 Introduction

Nodulation is a complex organogenesis process involving signal exchanges
between the host plant roots and their rhizobial symbionts in certain members of the
leguminosae family plants. This symbiotic interaction results the formation of
nodule in roots wherein plants supplies reduced carbon derived from photosynthesis
for the bacteroides in exchange for fixed nitrogen available as ammonium.
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Key genes involved in the nodulation process have been discovered in several
studies using molecular and genetic approaches for some legume species including
Lotus japonicas and Medicago truncatula [1-5]. Gaining an understanding of the
biological function of any novel gene and/or mutant surely provides valuable
information of that particular gene and protein gene product. However, protein
expression is regulated not only at the transcriptional level, but also at the trans-
lational and post-translational levels. In addition, protein networks and/or pathways
that are common for all legumes and regulated during nodulation are poorly
investigated. Obtaining information at the translational and post-translational levels,
proteomics approaches are extremely efficient tools that offer deeper into complex
biological protein networks in any developmental process.

Over the last decades, proteomics approaches are increasingly being utilized to
develop a more comprehensive picture of nodulation in many models and/or eco-
nomically important legume species including Medicago, soybean, lotus and pea
(Table 8.1; Fig. 8.1). Recently Imin [6] described the applications of gel-based
quantitative and comparative proteomics in analyzing root nodule samples.
However, recent proteomics research revealed that gel-free proteomics approaches
are quite capable of increasing the yield of protein identifications and high quality
quantitation. In addition, several post-translational modifications regulated during
nodulation process can also be determined and quantified by various gel-free
methods (Fig. 8.1).

This chapter provides an overview of recent developments in the application of
proteomic technologies including gel-based, gel-free, isotopic labeling for quanti-
tation, and post translational modifications that target proteomic analysis of nodule
organogenesis. These approaches provide a deeper understanding of protein regu-
lation and interaction among the possible pathways that are associated with
nodulation in legume plants. In addition, the challenges faced by proteomics in
understanding nodulation are discussed, and some possible future strategies for
meeting these challenges are proposed.

8.2 Proteomics Methodologies for Analyzing Nodulation

Optimization of protein extraction and purification from biological samples in a
proteomic experiment is a fundamentally critical step that greatly influences the
breadth of proteome characterized. Most plant tissues consist of a wide range of
compounds including proteases, polysaccharides, lipids, phenolic compounds, and
secondary metabolites which are the most common interfering components in gel
electrophoresis. However, a significant effort has been made over the last two
decades to optimize protein extraction methods from recalcitrant plant tissue
samples [7, 8].
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Fig. 8.1 Current status of nodule proteomic studies in legume plants. a The growth in the
numbers of papers published between 2000 and 2015. The numbers of publications were compiled
by searches in PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) with the key words “legume
nodule proteomic”. b, ¢ Represents the comparative number of studies carried on various types of
legume species and proteomics methodologies, respectively

8.2.1 Gel-Based Proteomics

In classical gel-based proteomics, protein separation by one dimensional (1-DE)
and/or 2-dimensional polyacrylamide gel electrophoresis (2-DE) coupled with
Edman sequencing, MALDI-TOF MS, or ESI-MS/MS analysis are the most fre-
quent methodologies used to investigate protein regulation in the nodulation pro-
cess (Table 8.1). In conventional 1-DE and 2-DE based analyses, gels are mostly
stained with coomassie brilliant blue and/or silver nitrate. For the first time, Panter
et al. [9] used the 2-DE approach to demonstrate protein regulation during nodu-
lation in soybean roots. Using N-terminal sequencing they were able to identify a
total of 17 proteins of which nine did not show any significant results. This outcome
might be related to the lack of complete genome sequences of many of the legume
species including soybean. Later, the same research group (Dr. Udvardi) developed
the proteome maps of control M. alba roots, wild-type nodules, cultured S. meliloti,
and S. meliloti bacteroides [10]. Among the 600 differentially regulated proteins
250 were up-regulated in the nodule, compared with the root, and over 350 proteins
were down regulated in the bacteroid form of the rhizobia, compared with cultured
eins were identified with peptide mass
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fingerprinting. To date, the most extensive 2-DE gel-based experiment was con-
ducted to develop a root and nodule proteome map of Lotus by Dam et al. [11]
where over 1000 proteins have been successfully identified.

The conventional 2-DE gel-based approach has been extensively used as
recently as 2010 to demonstrate protein regulation and to develop proteome map of
many legumes and rhizobia during nodulation. However, this approach has a
number of limitations including gel to gel variation, low resolution in terms of
protein separation and quantitation. To address some of these weaknesses,
researchers have employed 2-D differentially gel electrophoresis (2D-DIGE),
another gel-based approach that utilizes various fluorescent reagents (CyDye) to
label protein samples before 2-DE. This method allows several samples to be
separated simultaneously and visualized in one gel, considerably reducing
gel-to-gel variation, and improving the precision of the quantitative analysis [12].
Thus far, only one proteomic experiment has employed this technology to inves-
tigate the relation of auxin in nodule formation in Medicago [13].

8.2.2 Gel-Free Proteomics

2-DE gel methodologies remain the most widely used method for analyzing root
nodule protein regulation in legume plants and bacteroides (Fig. 8.1). However, the
technique is not satisfactory and in some respects impractical for separating and
identifying soluble/insoluble and/or highly hydrophobic core components of
multi-subunit complexes in organelle proteomes such as membrane proteomes. To
overcome this limitation, gel-free proteomics approaches have been used in many
nodule proteomics studies (Table 8.1; Fig. 8.1). In this method, proteins are
digested with trypsin in solution followed by loading of desalted peptides onto a
C18 reversed-phase column which are in line with the MS/MS. A gel free shotgun
proteomic analysis can yield confident identification of 13,000 proteins [14]
whereas only 2000 protein spots can be clearly visualized and processed prior to
identification by mass spectrometry using 2-DE approach. Most importantly the
2-DE approach is low throughput. Characterization of the protein identity within a
2-DE spot requires a separate LC-MS/MS experiment, making wide-scale discov-
ery impractical.

Accurate quantitation of relative peptide abundance is critical to gain biological
understanding from shotgun proteomic experiments. In intensity-based, label-free
quantitative analysis, relative quantitation is provided by monitoring individual
peptide abundance in the MS spectrum through different cellular states.
Alternatively, label-free quantitative analysis may be provided by spectral counting
of peptides. Samples may also be quantified through stable isotope labeling either in
cell culture (SILAC method) or by adding the isotopic labels after protein digestion.
Isotope tagging for relative and absolute protein quantitation iITRAQ) based on
isobaric mass labels at the N-termini and lysine side chains of peptides in a digest
mixture _[15], is_one_of the most reliable and promising gel-free proteomics
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methods. This approach offers confident protein identification with excellent
reproducible quantitation. This quantitation is essential to fully characterize protein
dynamics, turnover, and interaction partners.

However, quantitative shotgun proteomic analysis has only been applied to the
analysis of nodule proteome in a limited number of cases thus far such as identi-
fication and regulation of nodule proteins during development or in response to
stress conditions [16-22]. Recently, label-free quantitative proteomic analysis was
applied to the M. loti bacteroide proteome during the course of nodule maturation.
This analysis revealed that M. loti enters a nitrogen-deficient condition during the
early stages of nodule development, and then a nitrogen-rich condition during the
intermediate stages of nodule development [22].

Earlier studies showed that, gel-free shotgun proteomic approaches can identify
almost all types of proteins, including highly acidic, basic, hydrophobic and low
abundant proteins, as well as protein complexes (Table 8.1). These techniques are
considered to be among the most promising techniques available for large-scale
quantitative proteome analysis in plant biology [23].

8.3 Subcellular and Tissue Specific Proteomics

During nodule formation, rhizobial infection of root hairs exhibits fascinating cell
biology. Rhizobia enter the root hair via endocytosis and are enclosed in a new
subcellular structure called the infection thread, which is later formed from the
invagination of the root-hair cell plasma membrane [24]. In this complex organo-
genesis process a number genes and/or proteins from different subcellular organs
including plasma membrane, microsome, mitochondria, and cytosol are directly
involved. Subcellular proteomics can be defined as the analysis of the expressed
proteins of purified individual cell compartments. This approach has emerged as an
interesting tool to complement total cell lysate proteomic data [25]. The current
status of plant subcellular proteomics has been extensively described by Agrawal
et al. [26]. Subcellular and tissue specific proteomics is therefore considered to be
an essential approach for the nodule biologist to investigate the subcellular and
tissue specific protein networks associated with nodulation.

8.3.1 Membrane Proteomics

Rhizobia enter root cells by endocytosis and form a unique compartment in the
plant cell known as symbiosome which is surrounded by a peribacteroid membrane
(PBM) formed from the plant plasma membrane during endocytosis of the bacteria.
The symbiosome plays a central role in the exchange of compounds between the
organisms [27].
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As the root plasma membrane is the first organelle that physically interacts with
and responds to the rhizobia, it is considered one of the key cellular structures for
proteomic analysis. For the first time, Panter et al. [9] used 2-DE coupled with
N-terminal sequencing to identify a handful of PBM proteins such as HSP70 and
HSP60. This study provided the first indication of the molecular machinery for co-
or post-translational import of cytoplasmic proteins in symbiosomes of the soybean
nodule. However, the identification of a very low number of PBM proteins was
probably due to the low resolution of separation of the PBM proteins by 2-DE and
the lack of complete genome sequence. This limitation was further resolved by
using gel-free proteomics technology which led to identification of over 100 PBM
proteins including a number of membrane proteins like transporters for sugars,
sulfate, and receptor kinases of L. japonicus [27]. Recently, soybean symbiosome
membrane (SM) and the PBM proteome was further analyzed by Clarke et al. [21].
In this study, the investigators used bicarbonate stripping and chloroform-methanol
extraction of isolated SM to reduce the complexity of the samples and enrich for
hydrophobic integral membrane proteins. Shotgun proteomic analysis led to the
confident identification of over 200 proteins from SM and PBM samples which
included a number of putative transporters for compounds such as sulfate, calcium,
hydrogen ions, peptide/dicarboxylate, and nitrate, as well as unknown transporters
and most of the previously identified SM and PBM proteins. Taken together these
earlier studies provided very clear messages that gel-free proteomics approaches are
the most efficient way of analyzing the nodule membrane proteome.

8.3.2 Cytosolic Proteomics

The plant cytosol is a complex intracellular fluid containing all the cellular com-
ponents that allow interactions between partitioned metabolic processes [28]. It has
been predicted that in eukaryotes over 50 % of total cellular protein reside in the
cytosol [29]. It is now well known that the cytosol is involved in a number of
prominent biochemical processes in the eukaryotic cell, however to the best of our
knowledge there are only two studies that have been conducted to analyze the
cytosolic proteome of nodules [19, 30]. Using conventional 2-DE based proteomic
approach Oehrle et al. [30] identified a total of 69 cytosolic proteins from soybean
nodule wherein the largest categories of proteins were involved in carbon meta-
bolism (~ 28 %) followed by nitrogen metabolism (~ 12 %), oxygen protection
(~ 12 %), and protein trafficking (11 %).

In the second study, Matamoros et al. [19] demonstrated the relative contribution
of cell organelles of host cells in nodule aging by analyzing the pea mitochondrial
and cytosolic proteome. Using a gel-free shotgun proteomic approach, a total of 81
cytosolic proteins were identified. Their results showed consistent reductions in the
protein concentrations of carbon metabolism enzymes, inhibition of protein syn-
thesis and increase in serine proteinase activity, disorganization of cytoskeleton,
and_a_sharp_reduction_of cytosolic_proteins during the senescence process.
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The sparsity of nodule cytosolic proteomic data sets is a major limitation for the
better understanding of the complex response and involvement of the cytosolic
proteome in nodule growth and development. Therefore, future comparative anal-
ysis of nodule cytosolic proteomes of different legume species is essential. Isolation
of pure nodule cytosolic fractions from a diverse set of legume species for LC—
MS/MS analysis will be critically essential to achieve this aim.

8.3.3 Mitochondrial Proteomics

Among the various subcellular organelles, mitochondria display a very noticeable
morphological, physiological and biochemical transformation during nodule for-
mation. For example, the shape of mitochondria was found to be larger, elongated
and cristae-rich by intensive folding of the inner membranes in the soybean root
rhizobia infected zone [31]. It has also been reported that mitochondria isolated
from soybean nodules exhibited higher oxidative and phosphorylative enzyme
activities than those from the roots [32]. Additionally, it has been proposed that
mitochondria might have functions for establishing symbiotic signal exchange
because mitochondria are believed to be evolved from ancestral bacteria [33] and
play a key role in apoptosis [34]. These earlier studies provide valuable clues that
motivate more in-depth analysis of the mitochondrial proteome.

Thus far, only two studies have been conducted to characterize the nodule
mitochondrial proteome. For the first time, soybean nodule and root mitochondrial
proteome have been analyzed by 2-DE and a total of 34 proteins were successfully
identified using MALDI-TOF, LC-MS/MS and N-terminal amino acid sequencing
[35]. Together with previously established mitochondrial proteins, this study newly
revealed a number of mitochondrial proteins such as 27, 22.5 kDa subunits of
NADH ubiquinone reductase, ferrochelatase, hypothetical protein 11 (coxI 5’
region), NADPH quinone oxidoreductase and pseudo-atpA. These proteins were
not previously cataloged in the plant mitochondrial proteome of Arabidopsis, pea
and rice [35]. More recently, the nodule mitochondrial proteome of common bean
has been analyzed in order to demonstrate the relative contribution of the mito-
chondria and cytosol of host cells to nodule aging [19]. Comparative proteome
analysis of different developmental stages revealed that mitochondria are the early
target of oxidative modifications and a likely source of redox signals during the
nodule senescence process.

8.4 Single Cell Proteomics

Root hair, a single cell structural extension of root epidermal cells in the elongation
zone are the primary sites for rhizobial infection which lead to the formation of a
new. organ, the nodule_in_legumes_[36].. Due to several advantages, root hair is
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considered one of the most important cellular targets for analysis using system
biology [37]. The Stacey group demonstrated for the first time the protein changes
in soybean root hairs upon rhizobial inoculation [24]. Among the 37 proteins
identified by a conventional 2-DE method coupled with MALDI-TOF, a number of
root hair and rhizobial inoculation specific proteins associated with root hair
deformation, infection and legume nodulation in response to bacterial infection
were also identified. Using gel-based approach Brechenmacher et al. [38] devel-
oped a soybean root hair proteome map encompassing a catalogue of nearly 1500
proteins. Later, a very comprehensive proteome reference map of the soybean root
hair cell was developed by the same research group wherein over 5700 proteins
were identified using the Accurate Mass and Time (AMT) tag approach coupled
with LC-MS/MS [39]. To date, very limited information is available for the root
hair proteomic composition of other legumes. Therefore, this well-established
soybean root hair proteome protocol offers an opportunity to demonstrate other
legumes root hair cell proteome which will ultimately build an integrated predictive
model for nodule biology.

8.5 Post Translational Modification

Protein post-translational modifications (PTMs) can affect protein function, inter-
actions with other proteins, subcellular targeting, and stability. PTMs play essential
roles in protein signaling, localization, function, degradation and other important
biological processes. A number of recent studies have shown that a large number of
nodule proteins become targets of posttranslational modification including, phos-
phorylation [40], sulfenylation [41], and ubiquitination [42]. Results of these earlier
studies indicate that nodule formation is a tightly regulated process that integrates a
variety of signaling events by various post translational modifications. Recent
advanced technologies in mass spectrometry are capable of identification of a
variety of peptide modifications such as phosphorylation, sulfenylation, nitrosyla-
tion and ubiquitination. Quantitative analysis of PTMs by mass spectrometry offers
a promising way to understand the role of these modifications and the target pro-
teins in signaling networks involved either in nodule organogenesis or in the
infection process.

8.5.1 Phosphoproteomics

It has become evident that many kinases such as LysM-receptor kinase (LYK3),
receptor-like kinase (DMI2), and calcium/calmodulin-dependent protein kinases
(DMI3) are activated as an early event of nod factor perception in response to
rhizobial infection of legume roots [43, 44]. In addition, a number of other protein
kinases have been identified by genetic_approaches to be associated with nodule
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organogenesis [45, 46] indicating that protein phosphorylation plays a central role
in symbiotic signaling networks. Certainly, these studies emphasize the importance
of quantitative proteomic analysis of proteins that are rapidly phosphorylated after
rhizobial inoculation.

Recent advances in MS-based methods for phosphoproteomic analysis offer the
prospect of a wide-scale view of cellular phosphorylation across the proteome.
However, few large scale phosphoproteomic studies have been conducted so far for
legume nodules and/or roots [18, 47, 48]. For the first time, the Medicago root
phosphoproteome was analyzed by Grimsrud et al. [47]. In this study, proteins were
isolated from a root whole cell lysate and membrane-enriched fractions and
phosphopeptides were enriched by immobilized metal affinity chromatography
(IMAC) and identified by electron transfer dissociation (ETD)-enabled LTQ
Orbitrap mass spectrometer. With these technologies a total of 3457 unique
phosphopeptides corresponding to 829 unique proteins containing a total of 3404
non-redundant phosphorylation sites were identified. Until now, the most com-
prehensive phosphoproteome analysis of Medicago roots were performed by Rose
et al. [48] wherein early response of nod factor treatment in wildtype versus mutant
nfp and the dmi3 Medicago root proteome were compared. For quantitative anal-
ysis, proteins were labeled with TMT and iTRAQ followed by strong cation
exchange and nano-LC-MS/MS analysis. This study revealed 7739 proteins con-
taining 13,506 non-redundant phosphosites in response to nod factor of the model
legume Medicago truncatula. This large scale quantitative phosphoprotemic dataset
revealed enrichment in proteins implicated in the NF signaling cascade with or
without nod factor.

Nguyen et al. [18] performed a comparative phosphoproteomic analysis of the
soybean root hair and stripped roots with or without inoculation of the
soybean-specific rhizobium B. japonicum. Proteins were labeled with the isobaric tag
eight-plex iTRAQ and phosphopeptides were enriched by Ni-NTA magnetic beads
followed by nanoLC-MS/MS coupled with HCD and decision tree guided CID/ETD
for identification. A total of 1625 unique phosphopeptides with 1659 non-redundant
phosphorylation sites corresponding to 1126 non-redundant phosphoproteins were
identified from both root hairs and stripped roots wherein 273 phosphopeptides were
significantly differentially regulated in response to B. japonicum infection. This study
indicated a complex kinase-phosphatase-substrate network during rhizobial infection
[18].

8.5.2  Sulfenyl Proteomics

Sulfenylation is another type of protein modification wherein the protein cysteine
residues are oxidized by hydrogen peroxide to form sulfenic acid (-SOH) [49].
Some recent studies showed that sulfenylated proteins are involved in metabolic
processes in plants [S0]. Reactive oxygen species such as hydrogen peroxide appear
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to be essential for optimal nodule development [51], underscoring the importance of
identification of protein targets of legume nodules.

Recently, Oger et al. [41] identified the sulfenylated proteins of Medicago
truncatula and the Sinorhizobium meliloti during different developmental stages.
Two different methods: chemical Bio-DCP1 probe and YAP1-cCRD genetic probe
were used to trap the S-OH oxidized proteins followed by affinity chromatography
for purification. The trapped purified proteins were further separated by SDS-PAGE
followed by trypsin digestion and identification by LC-MS/MS analysis. These two
methods led to the identification of a total of 91 M. truncatula and 20 S. meliloti
sulfenylated proteins. These results indicate that sulfenylation may regulate the
activity of proteins playing important roles in nodule development and function
[41]. In summary, this proteomic analysis opens a new avenue of study of how
other post-translational modifications can regulate the nodulation process.

8.6 Targeted Proteomics

In the M. truncatula genome, more than 500 nodule-specific cysteine-rich
(NCR) peptide corresponding genes have been expressed at the mRNA level but
only eight of them have been validated at the protein level [52, 53]. The mature
NCR peptides are mostly 30-50 residues long including a signal peptide. The
secreted mature peptides feature conserved cysteine patterns [20]. Recently, Farkas
et al. [53] showed that NCR247 penetrates the bacteria and forms complexes with
many bacterial proteins leading to arrested bacterial cell division and initiation of
cell elongation. Therefore, the comprehensive identification of all the NCR peptides
is critically important. Thus far only a single proteomic analysis has been performed
to catalog the NCR proteins of legume species [20]. This study successfully
identified a total of 138 NCRs and provided the first evidence of translation of the
NCR genes and high level accumulation of the NCR peptides in the bacteroides.

However, recent advances in mass spectrometry such as the availability of the
newest generation of Orbitrap instruments such as Q Exactive hybrid
quadrupole-Orbitrap and other triple quadrupole instruments such as TSQ Quantiva
or Vantage offers an efficient and user-friendly alternative way for further targeted
analysis of any specific peptide. Targeted proteomics using these new instruments is
able to provide absolute quantification at a wide scale.

8.7 Future Perspectives

Certainly, comparative and quantitative proteomic technologies have greatly
enhanced our understating at the proteome level of how legume roots respond to
rhizobia during the nodulation process. In addition, wide-scale analysis of
post-translationally_modified _proteins_revealed phosphorylation of thousands of
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proteins during the nodulation process suggesting a complex network of
kinase-substrate and phosphatase-substrate interactions in response to rhizobial
infections. In the future, it will be crucial to identify the direct interactions between
kinases and phosphatases and the individual phosphorylation sites identified in
these phosphoproteomic studies. Recent advances in the mass spectrometry tech-
nologies could potentially identify the targets and the phosphorylation sites of many
of kinases in vitro and/or in vivo [54-56]. Although phosphorylation is one of the
most prevalent types of post-translational regulations thought to be happening
during the nodulation process, identification of large number of sulfenylated pro-
teins also suggested that nodulation process could also be regulated by other type
protein modifications. Other post translational modifications including phospho-
rylation, sulfenylation, nitrosylation, N-glycosylation, ubiquitination, methionine
oxidation, S-nitrosylation, and acetylation have been detected in plants. Wide-scale
characterization of these other PTMs could be imperative for understanding their
role during the nodulation process.
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Chapter 9
Proteomic Applications for Farm
Animal Management

Ehsan Oskoueian, William Mullen and Amaya Albalat

Abstract The implementation of proteomics is an important step towards a better
understanding of the complex biological systems that define animal health and
production. The role that proteomics can play in the context of farm animal pro-
duction is increasingly recognized and to date proteomics has been applied to
characterize the physiology behind animal growth and development, reproduction,
welfare and animal products. Furthermore, recent advances in mass spectrometry
technologies have led to the development of novel strategies aimed at the identi-
fication of biomarkers present in different tissues and body fluids. Identification of
valid biomarkers in animal tissue or body fluids such as serum, urine, milk, saliva,
cerebrospinal fluid and semen to enable bio-monitoring on animal health and
provide valuable information, on production, feeding status, and animal-
environment interaction is a priority in this field. Therefore, analysis of the pro-
teome linked with biomarker discovery is emerging into a field of high interest,
with the aim of improving farm animal productivity and welfare. The present book
chapter addresses the recent specific advances of interest in farm animal proteomics
and introduces biomarker approaches that are relevant in animal health, production
and quality.
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9.1 Introduction

Animal production has transformed to a largely industrialized sector over the past
half-century. Increased effectiveness in animal production systems is a pressing
issue given current estimates in global population growth of around 9 billion people
by 2050 Godfray et al. [1]. In this scenario food producers in general and animal
producers in particular are expected to experience increased competition of avail-
able resources. Farm animals are mainly raised to obtain animal products that are
destined for use (i.e. wool and leather) or direct consumption (i.e. milk, meat and
eggs). The main animal species being commercially farmed at large scale include
terrestrial (cattle, swine, poultry and sheep) and aquatic species (several species of
fish and prawns). The end products of these intensive animal farming systems have
traditionally been mainly meat and milk from terrestrial farming and fish and
shellfish products from the aquaculture sector, which are gaining importance in
terms of volume and nutritional properties [2]. The end products of both terrestrial
and aquatic farmed animal species will be highly depended on the farming con-
ditions, level of domestication (higher in terrestrial than aquatic species) and
selective breeding strategies. The role that proteomics or the study of all proteins in
a given tissue or biofluid can play in animal production and food sciences is
increasingly being recognized [3]. The study of the proteome adds a layer of
functional information to the available genomic resources. For this reason, in the
last decade, different proteomics approaches have been applied to increase our
understanding at production stage and post-production stages (Fig. 9.1). Proteomic
applications include studies to unravel the physiology behind animal growth and
development, reproduction, animal welfare and health/disease conditions at pro-
duction stage and there are also studies to characterize the properties of the products
produced and study their alterations during different storage and/or post-harvest
treatments at post-production stage [4—8]. In many cases, fundamental proteomic
research has also been focused on the discovery of protein biomarkers for different
diagnostic purposes and establishing quality markers [3, 9-12] (Fig. 9.1).

A biomarker in a clinical context can be defined as a molecule that is objectively
measured and evaluated as an indicator of a normal biological processes, patho-
genic processes, or pharmacologic responses to therapeutic intervention [13]. This
is one of the main applications of proteomics in the human biomedical field and it is
relevant also in a veterinary medicine context [14, 15]. Moreover, in a food science
context proteomics has also been used to identify individual proteins or protein
patterns that can be used as quality markers of the final products. This approach,
which is particularly important in food production, requires taking into account not
only the animal biology production conditions per se but also the slaughtering,
processing and storage conditions [7]. This interaction between animal physiology,
biochemistry and technology will for instance determine changes in the proteome
that will take place in the conversion from muscle to meat and finally dictate key
quality properties such as water holding capacity, tenderness, and color [7].
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Fig. 9.1 Schematic illustration of proteomics approaches to improve farm animal production and
management

In this chapter we will introduce the main analytical workflows that have been
used in farm animal/food science and also present proteomic studies that aimed at a
better understanding of the biology of the animals being farmed or the discovery of
biomarkers for farm animal management in general. This will include studies in the
areas of animal nutrition and growth, gastrointestinal health, some key animal
products (meat, milk and eggs) and animal welfare.

9.2 Analytical Workflows Used in Farm Animal
Proteomics

The regulation of gene product expression can take place at gene sequence, tran-
scription, translation and post-translation levels. Arguably the expression levels of
all proteins would provide the most relevant single data set to characterize a bio-
logical system as proteins are responsible for the actual cellular work [16]. Thus
from mid 1970s the analysis of the proteome has been attempted using different
analytical workflows. This is also true when examining studies dealing with pro-
teomics in farm animal, aquaculture and food sciences. In contrast to transcrip-
tomics where very low expressed genes can be detected the complexity and high
dynamic range observed in the proteome means that proteins and/or peptides need
to be separated using different strategies, gel-based or gel-free methods respectively
before they are quantified and identified by mass spectrometry (MS) (Fig. 9.2).
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Fig. 9.2 The workflow showing the proteins and peptides separation, quantification and
identification techniques using non-targeted approaches

Generally, gel-based proteomics approach consists of several stages including
sample preparation to gel imaging, image to spot digestion, digest to MS analysis,
and search of results into a database, data analysis and archiving. This workflow has
been successfully applied in many studies, especially since the development of
two-dimensional protein gel electrophoresis (2DE) [3]. In 2DE, proteins are sepa-
rated according to their isoelectric point (first dimension) and molecular weight
(MW) (second dimension, sodium dodecyl sulphate electrophoresis). Detection of
proteins is achieved by using visible stains such as colloidal Coomassie or silver
stain. Due to gel reproducibility issues if relative quantification is required differ-
ential gel electrophoresis (2D-DiGE) is normally the method of choice (Fig. 9.2). In
2D-DiGE the use of amino-selective fluorescence dyes with different excitation
wavelengths is used before the 2DE step so that two different samples plus and
internal standard can be run at the same time, allowing better comparisons and
gel-to-gel variation. Spots can be then digested typically using trypsin into peptides
and analysed using MALDI-MS or LC-MS/MS to gather information on their
amino acid sequence. This approach has, so far, been the most widely used for
farmed animal research. While 2DE allows for the detection of post-translational
modifications (PTMs), protein isoforms and visualization of protein complexes this
platform is less effective in detecting low abundance, very large or very
hydrophobic proteins [17]. However, possibly one of the main limitations of this
approach is that 2DE cannot be coupled on-line with an MS-detector and therefore
it is relatively labour intensive, especially if compared with on-line fractionation
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systems such as liquid chromatography (LC-MS) and capillary electrophoresis
(CE-MS) [18]. These systems have been reported to be rather complementary,
although for identification purposes LC-MS/MS has been the method of choice [19,
20] while CE-MS and direct peptide fingerprints using matrix assisted laser des-
orption (MALDI-MS) have used for peptide profiling [21-23].

In general terms, LC is more sensitive than gel electrophoresis as there is no
need to recover proteins or peptides from a gel matrix. However, sample com-
plexity increases with the higher the number of analytes making consistent,
reproducible data acquisition a challenge and also the pipeline for data analysis
more complex, especially is a label-free method is used. In shotgun LC-MS/MS
proteins that have been previously digested into peptides can be quantified using
label-free or label-based methods (Fig. 9.2).

In reality, in a proteomics context absolute protein quantification is difficult and
often not needed per se as in many cases the identification of differential proteins
can be achieved using relative quantification. Relative quantification of intact
proteins can be achieved in 2DE using labeling strategies such as the popular
difference gel electrophoresis (DiGE), a strategy commonly used in farm animal
research [24, 25]. Relative quantification at peptide level can be achieved using
chemically labeled methods such as iTRAQ or by metabolically labeling proteins
using heavy/light amino acids (stable isotope label with amino acids in culture;
SILAC). Examples of studies using iTRAQ in farm animal context are varied and
increasing indicating the relevance of this approach [26-28]. However, there is
evidence that iTRAQ has a lower coverage of the proteome, as well as other issues,
than label free approaches [29, 30].

9.2.1 Proteomics in Nutrition and Growth

The growth and development of farm animals requires a balanced diet with the right
mixture of nutrients. The proteome analysis of tissues or body fluids can elucidate
growth mechanisms and reveals how the nutrients are contributing to this process.
Among nutritional biomarkers, proteins related to amino acids metabolism such as
hepatic alpha enolase, elongation factor 2, calreticulin, cytochrome bS5,
apolipoprotein A-I and catalase proteins have been reported to change in lactating
dairy goats fed with a high-grain diet [31]. In another study by Romao et al. [32]
who studied the proteomic changes in subcutaneous adipose tissue from cattle fed a
high-grain diet, in an effort to understand the molecular mechanisms involved in fat
development. The low abundance of lipogenic proteins in the subcutaneous fat
implied that the nutrients consumed by cattle were channeled into muscle devel-
opment instead of fat deposition and as consequence studies in this area could help
develop new strategies to manipulate adiposity in beef cattle improving meat
quality and animal productivity [32].

One of the important economic traits in the poultry industry is fast growth and
development. The proteome analysis of breast meat by Phongpa-Ngan et al. [33]
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and Doherty et al. [34] indicated that a high abundance of proteins, including
pyruvate kinase, creatine kinase, triosephosphate isomerase, ubiquitin, heat shock
protein, myosin heavy chain and actin are associated with a fast growth rate of
chickens. In addition, the study conducted by Teltathum and Mekchay [35]
unveiled the important role of other proteins classified as metabolic and
stress-related such like phosphoglycerate mutase 1, triosephosphate isomerase 1,
apolipoprotein al and fatty acid binding protein 3 which changed significantly with
chicken growth and development.

The study of the proteome in saliva has increased in recent years. Saliva is a
watery fluid secreted by the salivary glands containing electrolyte, hormones, and
serum-derived proteins. It is easily obtainable from large numbers of animals in a
noninvasive manner. One of the interesting properties of saliva is the presence of
proteins that encompass a wide range of activities including control of feeding
behavior [36, 37], feed conversion efficiency [38] and detoxification of
anti-nutritional factors [39]. For instance, the function of proteins such as carbonic
anhydrase II and VI are to maintain the constant bicarbonate concentration in the
digestive tract and adaptations to new diets are important [40]. The decline in the
abundance of these proteins could be an indicative marker of acidosis in ruminants
[41].

In the aquaculture sector, optimization of fish diets to meet animal nutritional
requirements, while reducing the inclusion of fishmeal and fish oil has been a
priority for many years. Changes in dietary protein and oil sources mainly due to
the substitution of fish meal and fish oil by vegetable protein and oil sources has
been studies in different species. In all cases, proteomics data indicated how dietary
manipulation affects a number of biological pathways. For instance, using 2DE
proteome analysis identified increased protein catabolism and protein turnover in
rainbow trout fed with a diet with a partial substitution of fish meal for soybean
meal for 12 weeks [42]. When rainbow trout were fed a diet containing no fishmeal
a significant reduction in growth rate was observed concomitant with an increase in
proteins involved in primary energy metabolism and two proteasome subunits,
indicative of protein degradation suggesting overall a higher energy demand in fish
fed diets with high content of plant protein [43]. On the other hand, the relevance of
phospholipid content in diets has been accessed by analysing the proteome in the
liver of pikeperch larvae. In this case, high phospholipid levels in the diet were
associated with a down-regulation of the glycolytic pathway and an increase in
sarcosine dehydrogenase (involved in methionine metabolism) while proteins
involved in cellular stress were up-regulated in larvae fed lowest phospholipid diet
(increase in glutathione S-transferase M and glucose regulated protein 75).
However, at this point it is important to emphasise that the impact that changes in
diet will have on fish metabolism will depend not only on the species and stage of
development but also on the genetic background of the species [6]. Another area of
interest has been the effect of probiotics included in fish diets [44, 45]. Effects
reported in early Atlantic cod larvae indicated up-regulation of some growth-related
proteins upon probacteria administration while up-regulation of proteins with
immunity function_was not always observed [45].
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9.2.2 Proteomics in Gastrointestinal Health

The gastrointestinal tract (GIT) is responsible for feed digestion and nutrient
absorption. The site of digestion is different in the monogasteric and polygasteric
terrestrial farm animals. Monogasteric animals such as poultry, pigs and horses
possess single-chambered stomach while ruminants like cow, sheep or goats have
four-chambered complex stomach. The complex stomach in ruminants adapted to
the wide range of feed resources and the presence of rumen microbes enables the
utilization of cellulosic materials [46].

According to Yang et al. [47] metabolic processes taking place in the GIT could
be monitored through proteome analysis. For instance, the proteome analysis of
rumen epithelial cells in goats fed high energy diet using 2DE indicated a signif-
icant decrease in chaperone proteins with cellular protective function such as heat
shock cognate 71 kDa protein, peroxiredoxin-6, serpin HQ, protein
disulfide-isomerase and selenium-binding protein [48]. Downregulation of these
proteins together with acidosis could result in the impairment of rumen barrier
function. Similarly, a proteomics study using DiGE on intestine tissue of the
chickens supplemented with Enterococcus faecium as a probiotic, indicated that
although there was no effect on daily weight gain an enhanced expression of
proteins related to intestinal structure, which may increase the absorptive surface
area was observed. Furthermore, other proteins related to substance metabolism,
immune and antioxidant systems were altered increasing our understanding on the
probiotic mechanisms involved on broiler intestine biology [49].

Indeed, the rumen acts as fermentation chamber hosting various microbes
including bacteria, protozoa, fungi and archaea. The microbial enzymes digest and
convert the fibrous material to the valuable metabolites to be absorbed by the host.
The animal gut microbiota plays an important role in feed digestion, protection
from pathogens and provision of key metabolites. Recently, metaproteomics has
been introduced as a technique to study the gut microbiota in terrestrial farm
animals. The identification of bacteria proteins recovered directly from fecal sam-
ples provides valuable information on microbial population present in the gut. The
metaproteomics is still developing in the animal science and to date only a limited
number of studies are available on ruminants and poultry [49-51].

9.3 Proteomics in Some Key Animal Products

9.3.1 Meat Proteomics

The conversion of muscle to meat is a complex process and proteomics has been
applied in many studies to unravel the biochemical reactions that are involved in
this process as well as the molecular processes that determine meat quality [7, 52,
53]. From a biochemical perspective, briefly, upon animal slaughter, with no
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circulating blood supplying oxygen, muscle cells activate anaerobic metabolism
eventually depleting glycogen reserves to generate adenosine triphosphate (ATP).
As there is no removal of metabolic end products lactic acid is accumulated pro-
ducing muscle acidification. This process causes not only loss in water holding
capacity (WHC) but also calcium release and eventually formation of cross-bridges
between myosin and actin filaments that cannot be resolved beginning the onset of
rigor mortis. A second step involves the action of different enzymes mainly
involved in proteolysis and oxidation. Factors such as genotype, sex, age, nutri-
tional status and management strategies such as stress during transportation and
slaughter protocols have all been shown to affect these initial post-mortem meta-
bolic processes ultimately affecting meat quality. Proteomic studies have showed
the importance of these metabolic processes such as early post-mortem glycolysis
[54]. After 1 h of the slaughtering process key proteins from the glycolysis and the
tricarboxylic acid cycle increased significantly together with chaperone proteins
often associated with cellular responses to environmental stress such as crystalline
and heat shock proteins HSP27 and HSP60. The role of small, sHSPs in meat
quality was initially presented by several authors around a decade ago [55, 56].
With muscle post-mortem acidification and nutrient depletion apoptosis is induced
and in response sHSPs are recruited to impede the onset of apoptosis and to
chaperone the unfolding of muscle proteins. Thus heat shock proteins such as
HSP27 have been proposed as biomarkers of tenderness [57]. Other makers for
meat tenderness have been recently reviewed by Ouali et al. [55] and Gobert et al.
[9] and include proteins from glycolytic and oxidative energy production, cell
detoxification, protease inhibitors and HSPs.

Peroxiredoxin 1 and 6, protein DJ (PARK?7) [58], troponin T, alpha actin, or
heavy (MYH1) and light MYL1, MYL2 and MYL6B) myosin II chains have been
shown to change significantly [59] and are identified as biomarkers for the meat
tenderness. In addition, another key trait in defining meat quality is the color of the
meat as it is perceived by consumers as a spoilage indicator. The desirable color of
the meat varies according to different products but in general terms for the beef,
poultry and pork is cherry red, pale pink and pink, respectively. In accordance with
the results of Joseph et al. [60] color stability of Longissimus could be attributed to
higher abundance of chaperones and antioxidant proteins including
peroxiredoxin-2, HSP27 and peptide methionine sulfoxide reductase. In general
terms, it appears that darker meat is more oxidative oriented as shown by more
abundant mitochondrial enzymes of the respiratory chain, hemoglobin, and chap-
erone or regulatory proteins while in muscle leading to lighter meat is more
abundant on proteins involved in glycolysis and glutathione S-transferase [61].

Apart from tenderness and color, the flavor of the meat in pork and beef has also
shown to affect meat palatability. Meat flavor is determined among other factors by
the deposition of fat within the skeletal muscle known as marbling fat. Using 2DE
Kim et al. [62] reported that the triosephosphate isomerase and succinate dehy-
drogenase proteins correlated with intra muscular fat deposition (marbling fat) in
Korean cattle steers. Other studies also using 2DE have studied the contribution of
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different proteins and peptides in meat flavor. Although further studies are needed
in order to identify biomarkers of meat flavor [63].

Proteomics-based techniques have been very useful to characterize different
breeds [64]. Research in this area has also been applied to determine food adul-
teration. For instance, the study by Sentandreu et al. [65] confirmed that the pro-
teomics is capable of detecting contaminating chicken in pork at the concentration
as low as 0.5 %. In addition, detecting animals treated with the illegal growth
promoting agents such as prednisolone, dexamethasone and oestradiol has also
been possible with the aid of proteomics [66].

9.3.2 Milk Proteomics

Milk is a biological fluid with unique quality and complexity. It contains macro-
and micronutrients essential for growth and development [67]. To date, proteomics
approaches have been applied to characterise the milk proteome [68], study
mechanisms underlying milk production [69, 70], evaluation of milk quality [71]
and to identify the type of bacterial infection [23].

As reviewed by Bendixen et al. [72] while the major components in milk were
biochemically characterized more than two decades ago, the analysis of less
abundant but interesting proteins using proteomic techniques is more recent. Milk
composition has been shown to vary very significantly according to genetic, epi-
genetic and environmental factors [73, 74]. Negative energy balance (NEB) in cows
produced an increase in the abundance of stomatin and galactose-1-phosphate
proteins in the milk which could be used as indicators of NEB [75].

As already mentioned milk has also been used in several studies as a diagnostic
fluid. Traditionally, the most common strategy for the detection of bacteria
pathologies in bovine milk is by the use of 16S rRNA sequencing [76]. However,
using MALDI-MS it is possible to identify food-borne pathogens such as Listeria
monocytogenes and Staphylococcus aureus in the milk [77-80]. Besides, the
identification of microorganisms using mass spectrometry, milk has been analysed
using different proteomic platforms with the aim to find early biomarkers of mas-
titis. Bovine mastitis is a disease that is responsible for major economic losses to the
dairy industry [81, 82]. Significant milk changes described include the presence of
clots in milk, milk discoloration and high levels of leukocyte numbers, which leads
to a rise in somatic cell count. Mastitis is usually caused by bacterial infection with
major species being Streptococcus agalactiae, Staphylococcus aureus and
Mycoplasma bovis as well as environmental pathogens (i.e. Streptococcus uberis),
environmental coliforms gram negative (i.e. Escherichia coli) and other Gram
negative bacteria (i.e. Serratia, Pseudomonas and Proteus). Clinical mastitis is
detected by electrical conductivity, somatic cell count and lactate dehydrogenase
activity [83-85]. At proteome level, Ibeagha-Awemu et al. [86] found 73 proteins
significantly different using GeLC-MS/MS between normal whey and whey from
quarters infected with _either E. coli and S. aureus. Several authors have looked in
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detail the proteolytic events that take place under a mastitis infection as indeed a
potential cause of milk deterioration is proteolysis of milk proteins by bacterial or
endogenous proteases. Larsen et al. [87] identified approximately 20 different
peptides in milk samples from mammary glands infused lipoteichoic acid (toxin of
S. aureus). Peptides detected mainly through the action of endogenous proteases
originated mainly from og;- and B-caseins. Using CE-MS Mansor et al. [23]
developed a biomarker panel based on the naturally occurring peptides present in
milk from healthy versus milk from mastitis cows infected either with S. aureus or
E. coli. Differences in peptide profiling were also detected between the bacteria
species, which could help inform on antibiotic treatment.

9.3.3 [Egg Proteomics

Eggs are considered as an excellent source of inexpensive high quality protein for
human consumption and food production, proteins of pharmaceutical interest and
proteins that have been widely used in the biomedical research field and protein
chemistry [88-90]. Overall, the egg industry is interested in optimization of egg
production, strengthen the physical egg properties against bacterial entry, increase
egg shelf life and identification of protein biomarkers for egg quality.

There are two distinctly different part of an egg, the egg yolk is the part which
has the function to act as the food source for the developing embryo inside and it is
suspended in the egg white. The egg yolk represents a major reservoir of vitamins
and minerals and it contains the entire egg lipid content and about 50 % of the
protein. Mann and Mann [91] identified 119 proteins in chicken egg yolk plasma
using GeLC-MS/MS. The most abundant proteins were serum albumin, vitel-
logenin, apovitellenins, immunoglobulin Y, ovalbumin and a 12 kDa serum protein
with cross-reactivity to P2-microglobulin. This initial list was expanded to 255
unique proteins by Farinazzo et al. [92] using combinatorial peptide ligand libraries.

The egg white is the other part of the egg that has been described using pro-
teomics. Guérin-Dubiard et al. [93] identified sixteen proteins in the egg white
using 2-DE. Application of GeLC-MS/MS by Mann and Mann [94] increased the
identified proteins to 158. Proteomics approaches have also been applied to study
egg quality. Egg white thinning or the loss of egg white viscosity was studied with
storage time using 2DE [95]. Proteins that significantly changed over time at
ambient temperature (22 °C) were identified as ovalbumin, clusterin, ovoinhibitor,
ovotransferrin and prostaglandin D2 synthase. Furthermore, when looking at the
effect of storage temperature an accelerated degradation of ovalbumin was observed
at higher temperature. In this study, the decrease in clusterin was suggested as an
effective biomarker for egg quality evaluation [96].

One of the major concerns in the egg industry is bacterial contamination. The
eggshell, associated cuticle and shell membranes are the egg’s first line of defense
against contamination [97]. Although the eggshell is mainly composed of calcium
carbonate_several _proteins_involved. in _defense to resist contamination has been
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identified. Egg cuticle proteome analysis using GeLC-MS/MS by Rose-Martel et al.
[98] showed the presence of a number of proteins known to have antimicrobial
activity (lysozyme C, ovotransferrin, ovocalyxin-32, cystatin and ovoinhibitor).

9.4 Animal Welfare and Proteomics

Generally farm animals are reared under an intensive system and the presence of
stressors or lack of healthy condition may increase the animal susceptibility to the
diseases. The role of that stress and welfare play in animal production is important
not only from a quality and safety perspective but also because of public perception
and product acceptance [99]. In a farming context, stressors may arise due to
obvious suboptimal rearing and environmental conditions such as excessive
crowding/high stocking densities but also due to less obvious suboptimal conditions
such not allowing animals to express their ‘natural’ behavior or personality [100,
101]. At production stage, the consequences or impact of stress on farm animal
production has been well studied and has been linked not only to impaired growth
but also immune dysfunction [102]. Furthermore, at post-production stage stress
and welfare conditions can affect the quality of the final products [103, 104]. In this
area, proteomic studies have mainly been applied to evaluate stress conditions and
their impact on animal health and welfare. The identification of objective
laboratory-based biomarkers of stress and welfare is also a current priority as many
current stress markers such as cortisol have limitations [105]. Stress-related studies
so far have mostly focused on the effects of density [106], handling [107], envi-
ronmental conditions [108] and pre-slaughter stresses [5].

In pigs, 2D-DiGE was applied to examine the proteome changes of skeletal
muscle in response to acute heat stress [108]. In predominantly white fiber portions,
heat stress decreased the abundance of tubulins and soluble actin and increased
phosphorylated cofilin 2 indicating a loss of microtubule structure. Overall, pro-
teomic data indicated significant changes in carbohydrate metabolism, structure and
an antioxidant response in skeletal muscle. The effect of high stocking density has
also been studied in pigs, as this is a determinant parameter in pig welfare. Serum
proteins were separated and quantified using 2D-DiGE and a significant increase in
B-actin was found and validated by western blot. This increase in serum [-actin
could be related to tissue damage associated with high stocking density [106]. In
cows, the physiological adaptations to different management systems were studied
in order to reveal new stress/welfare biomarkers. Redox system was also shown to
be significantly affected (glutathione peroxidase and paraoxonase) in cows living in
challenging environmental conditions [109]. Proteomics has also been applied to
assess fish welfare and their response to stress such as cold stress [110] and repeated
handling/crowding [111]. Alves et al. [111] compared the liver proteome of gilt-
head sea bream (Sparus aurata) grown under low-stressful and stressful conditions
(repeated handling and crowding). Proteins affected included heat shock proteins,
fatty _acid_binding_protein, mitochondrial porine, calmodulin, cofilin, glutamine
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synthetase, hemoglobin, beta-tubulin and proteins involved in carbohydrate meta-
bolism were differentially expressed in the fish grown under stressful condition.

9.5 Conclusions

The literature survey indicated that applications of proteomics approaches in the
farm animals have been expand significantly during the last decade and its
implementation is an important step toward understanding the complex biological
systems that control animal growth and development, reproduction, welfare and
animal products (milk, meat, egg, wool). Apart from that, the recent advances in the
area of biomarker discovery resulted in identification of specific, sensitive, quick
and cost effective biomarkers in body fluids such as serum, urine, milk, saliva and
semen which enabled the bio-monitoring and provide valuable information on
animal health, production, feeding status, and animal-environment interaction.
Therefore, the proteomics approaches are going to emerge into a field of high
interest with purpose of improving farm animal productivity and welfare.
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Chapter 10
Applications of Proteomics in Aquaculture

Pedro M. Rodrigues, Denise Schrama, Alexandre Campos,
Hugo Osério and Marisa Freitas

Abstract Aquaculture is one of the fastest growing world industries due to the
increased demand of fishery products for human consumption and capture restric-
tions as a result of aquatic ecosystems exploitation. Aquaculture is therefore an
extremely competitive business with major challenges to keep a high quality farmed
fish through a sustainable production system. These challenges imposed quite
important changes in this more traditional market, namely at the level of integrating
scientific knowledge and research. Proteomics presents itself as a powerful tool not
only for a better understanding of the marine organisms biology but also to provide
solutions to deal with changes and the increasing demand in the system’s
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production line to ensure the required supply. In this book chapter we will give an
overview of aquaculture nowadays, its challenges and describe relevant proteomics
studies in several areas of this industry. A brief description of the proteomics
technical approaches applied to aquaculture will also be addressed.

Keywords Proteomics - Fish - Aquaculture - Fish proteomics - Fish biology

10.1 Introduction

Aquaculture refers to all forms of active culturing of aquatic animals and plants,
occurring in marine, brackish, or fresh waters. In recent decades the once almost
exclusive practice of Easter Asia countries (namely China) has spread around the
world. According to the Global Aquaculture Production statistics database from
FAO, this sector continues to grow until the date of 2013, reaching a value of about
97.2 million tons, of which around 70.0 million tons of the total food fish and
27.0 million tons of aquatic plants [1]. The tremendous growth of this industry has
been stimulated by the intrinsic limitations to the productivity of the wild,
unmanaged aquatic ecosystems overexploited by humans as sources of fish, aquatic
invertebrates and seaweeds, with harvest yields declining substantially over the last
decades.

Opposite to traditional aquaculture invented by the Chinese many thousands of
years ago, modern aquaculture is driven by competitiveness in the industry based
on scientific and technical knowledge that focuses on improving fish health and
nutrition, welfare assessment and stress reduction, diseases and the use of antibi-
otics and vaccines.

The main quality attributes of aquaculture products is the starting point to a
perspective of the current consumer expectations, followed by a critical review of
the main sensory, physical, chemical and microbial methods used until the present
for quality evaluations of aquatic farmed products.

The increase in demand for fishery products for human consumption during the
last decade made aquaculture an extremely competitive market and more recent
approaches using emerging technologies like proteomics and other “Omics” (ge-
nomics, metabolomics) have been used in order to improve the knowledge on the
impact of nutritional and welfare factors on aquaculture products, quality, health
and safety, therefore contributing towards obtaining higher quality of farmed spe-
cies through a sustainable production system (Fig. 10.1). Proteomics is seen
nowadays as a complementary science to genomics and transcriptomics and the
number of aquaculture research studies using proteomics has grown almost expo-
nentially over the last decade [2]. The proteome is defined as the entire set of
proteins expressed in an organism, cell, tissue or fluid at a given time under defined
conditions and unlikely the genome, the proteome has the ability of a dynamic
response to an external/environmental stimulus. Proteomics can also be used as a
novel way_of understanding biological mechanisms since protein posttranslational
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Fig. 10.1 Aquaculture
sustainable production system

PROTEOMICS in
AQUACULTURE
+

(other omics)

modifications that play a main role in protein function, can be characterized using
this type of approach. Nevertheless there is a major drawback that is related to the
lack of available information at the genome level in the vast majority of the cultured
species [3]. We believe that this problem will be partially overcome in a near future,
based on recent developments in genome sequence technologies that will trigger the
availability of genome and EST data of aquaculture organisms [4].

In this review we will address the different applications of proteomics in
aquaculture, with a focus on food fish species, with a brief overview on fish model
organisms and the latest proteomic technologies and their contribution to the
knowledge of species biology, welfare, and to the safety and quality of aquaculture
products.

10.2 Fish Species in Aquaculture

The major utilization of cultivated food fishery species is for human consumption,
being recognized as a valuable and complementary source of protein, or as fish and
animal feed. In 2013 the contribution of aquaculture to the world total fish pro-
duction reached 43.1 % [1]. A total of 567 species have been referenced by the
FAO, including finfishes (354 species, with 5 hybrids), molluscs (102), crustaceans
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(59), amphibians and reptiles (6), aquatic invertebrates (9) and marine and fresh-
water algae (37). Finfish represent about 63.5 % of world production of farmed
fishery products followed by crustaceans (22.4 %), molluscs (11.5 %) and other
species (2.5 %). Freshwater aquaculture is mostly focused in the production of
finfish whereas in marine aquaculture the main production comes from the culti-
vation of mollusc species [5]. Despite the increased number of fishery species
cultivated nowadays, the largest percentage of the global production is represented
by a reduced number of species. A list of 25 most cultivated species is presented in
Table 10.1. Fish species of Cyprinidae family (e.g. Ctenopharyngodon idellus,
Hypophthalmichthys molitrix, Cyprinus carpio), tilapias and other cichlids (e.g.
Oreochromis niloticus) predominate in world aquaculture. Other most representa-
tive fish species are the Atlantic salmon (Salmo salar), rainbow trout
(Oncorhynchus mykiss) and milkfish (Chanos chanos) (Table 10.1). Other species
worth of mention regarding the high economical value are the European seabass
(Dicentrarchus labrax) and Atlantic cod (Gadus morhua). The clam Ruditapes
philippinarum is the most cultivated mollusc species, followed by the Agemaki
clam (Sinonovacula constricta), Pacific oyster (Crassostrea gigas) and blood
cockle (Anadara granosa). Within the group of Shrimps and prawns the most
cultivated are whiteleg shrimp (Penaeus vannamei) and giant tiger prawn (Penaeus
monodon).

With respect to the aquatic plants the Japanese kelp (Laminaria japonica) and
Wakame and Porphyra seaweeds are the most cultivated with the purpose of human
consumption. Eucheuma seaweeds (Kappaphycus alvarezii and Eucheuma spp.) are
also extensively cultivated but mainly for extraction of high economic value
compounds such as agar and the polysaccharide carrageenan utilized for instance in
food industry [6]. Microalgae are rich sources of essential polyunsaturated fatty
acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA), as well as vitamins and several antioxidants [7]. Species such as Chlorella
vulgaris, Haematococcus pluvialis, Dunaliella salina and cyanobacteria Spirulina
maxima are thus widely cultivated and commercialized as nutritional supplements
for humans and as animal feed additives [8]. In addition microalgae could have an
important role in the supply of novel natural bioactive compounds with a variety of
technological applications and can be used for the production of biodiesel [9-11].

The most cultivated fishery species have been object of intensive research,
involving genomics, proteomics and metabolomics. This work is enabling to
understand in detail for some of these species their biology and physiology or to
identify major environmental threats. Of notice regarding future research devel-
opments in aquaculture is the sequence of the genome of some of the most rep-
resentative species such as the common carp, Nile tilapia, Atlantic salmon, Pacific
oyster, European seabass, Atlantic cod, Japanese eel, among others. The genome
information has a great impact in the understanding of the functions in biological
systems. This information also has application in aquaculture. On the other hand the
analysis of the transcriptome has become extremely useful in research particularly
in species without sequenced genomes. Complementary global transcriptome
analysis, _using_technologies_like microarrays and deep RNA sequencing, has
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reached a broader number of cultivated species (Table 10.1) hence enabling a
conjunct of novel opportunities in those species regarding to functional genomics.
Proteomics approaches have also been also explored to investigate protein
expression in a variety of fishery species (Table 10.1). New opportunities for high
throughput approaches (mass spectrometry-based proteomics) and deep proteome
coverage in aquaculture species were created due to the complementary information
available at the level of the genome and transcriptome [12—15]. The OMICs
technologies have been employed in many different research topics from nutrition
[16, 17], to the disclosure of immune mechanisms and response to infection [12, 18,
19], characterization of the reproductive systems [15, 20-23], understanding of the
effects of climate change [24, 25], characterization of neuropeptides and hormone
like elements in crustaceans [26, 27], growth and development [28], risk assessment
and toxicity of environmental contaminants [29—-33], and mechanisms of detoxifi-
cation of contaminants [34].

10.3 Challenges in Aquaculture; the Proteomics Approach

Over the last five decades global fishery production has grown steadily with world
aquaculture expanding at an average annual rate of 6.2 % between 2000 and 2012
and fish remaining among the most traded commodities worldwide. The demand for
fishery products as a way of accessing a “better” animal protein both in developed
countries as well as in emerging economies has turned this industry into one of the
most promising economical commercial trades. This poses enormous constrains
especially at the production level where the main challenge is to produce more of a
higher quality farmed fish through a sustainable production. This is targeted in the
Blue Growth framework—one of the last initiatives by the Food and Agriculture
Organization (FAO) that promotes responsible and sustainable aquaculture with the
strengthening of policy environment, institutional arrangements and collaborative
processes to empower fish farming. Within this initiative, science can play an
extremely important role with a better knowledge of all the production chain in
aquaculture not only focused on the product (fishery) but also with new techno-
logical advances created or adapted to achieve this goal. Is at this level that pro-
teomics can present itself as an innovative and cutting edge technology to face the
big challenge.

The proteome consists of all the proteins produced from the genome and offers a
holistic and comprehensive information regarding the proteins expressed in a given
organ, tissue, cell or fluid at a given time and under a specific condition or stimulus.
Unlike the genome, the proteome defines a dynamic state subject to a multitude of
changes of diverse nature and varies with time. Proteomics provides information
not only regarding changes in protein expression (comparative proteomics), but also
the characterization of protein post-translational modifications (PTMs). Quantitative
proteomics approaches include the more traditional gel-based [2D-electrophoresis
or.2D-DIGE (Difference gel electrophotesis)] and the gel-free based methods that
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might be separated further into label-free approaches (Spectral counting and
absolute quantitation) and labelling approaches [stable isotope labelling (SILAC),
isotope coded affinity tags (ICAT) and isobaric tagging (iTRAQ)]. Until recently,
the majority of proteomics-based studies in aquaculture were gel-based approaches,
mainly due to the lack of genomic database information on fishery species and also
the economic factor, since gel-free approaches require more expensive equipment.

10.4 Proteomics Technologies in Aquaculture Research

Aquaculture research has benefited from the continuous and fast development of
proteomics technologies in the last two decades. The most common proteomics
workflow (Fig. 10.2) comprehend the following phases: (1) Protein extraction,
clean-up and enrichment; (2) protein separation; (3) protein identification;
(4) quantification of protein expression levels and; (5) characterization of protein
post-translational modifications (PTMs).

Since a panoply of complementary approaches are available for each stage, a
careful planning of the experimental protocol has to be performed with several steps
of optimization for the best possible characterization of a given proteome. Some
experimental approaches perform complementary proteomics approaches, for
example, integrating gel-based and gel-free procedures as described below.

10.4.1 Sample Preparation

The sample preparation is the most critical stage of all the proteomics procedure
workflow since the strategies and options to extract and enrich the proteomes will
affect all the downstream processes.

The first step is to select a proper solubilisation buffer for protein extraction. It is
essential to ensure protein solubilisation for further analysis. The following aspects
should be considered for an optimal protein extraction:

(i) A proper pH is important to keep proteins soluble and stable. Most common
buffers are Tris-HCl (pH range 7.0-9.0) or HEPES-NaOH (7.2-8.2) at a
20-50 mM concentration.

(i) Detergents for solubilisation of poorly soluble/membrane proteins. For
example Triton X-100 (non-ionic), CHAPS (zwitterionic), or SDS (anionic)
at a concentration 0.1-1 %.

(iii) Salts for maintaining the ionic strength of the medium and to increase the
protein solubility. Typical recommended salts are NaCl or KCl at 50-150 mM.

(iv) Reducing agents to reduce oxidation damage. It is recommended DTT
(1-10 mM) or 2-mercaptoethanol (0.05 %).
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PROTEOMICS TECHNOLOGIES IN AQUACULTURE RESEARCH
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Fig. 10.2 Proteomics technologies in aquaculture research
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(v) Metal chelators to chelate metal ions and reduce oxidation damage (ex.
EGTA or EDTA at 1 mM).

(vi) Chaotropic reagents to disrupt the three-dimensional structure of proteins and
to reduce protein aggregates. Examples include guanidine hydrochloride
(0.5-6 M) or urea (0.5-8 M).

(vii) Itis very important to add protease inhibitors since cell/tissue disruption will
release proteases that will degrade proteins thus reducing total protein yield.
Specific inhibitors should be used for the different proteolytic enzymes:
aprotinin, PMSF or benzamidine for serine proteases; EDTA or EGTA for
metallo proteases; pepstatin A for aspartic proteases; and leupeptin for
cysteine and serine proteases.

Depending on cells or tissues samples, it may be necessary to enhance protein
extraction using physical disruption methods of cell lysis: mechanical, using a
polytron or beads, liquid homogenization with a French press or sonication.

A clean-up centrifugation step is necessary to remove non-solubilized com-
pounds, intact cells and lipids from the protein solution.

Often, proteomes present a highly dynamic range of protein levels. In the same
proteome, strongly expressed proteins may mask key regulatory proteins that are
expressed in small quantities. Protein fractionation is thus recommended to
normalize/decrease the protein dynamic range. Some examples of protein frac-
tionation include: subcellular fractionation, including cytoplasmic, membrane and
nuclear fractions; organelle enrichment including nuclei, mitochondria, lysosome or
peroxisome; or proteome equalization/normalization using combinatorial peptide
ligand libraries.

Liquid chromatography and mass spectrometry approaches have a low tolerance
to salt and detergents. It may be necessary to further clean-up protein samples by
dialysis, salt/detergent removal tips or a short SDS-PAGE gel run before further
proteomics downstream analysis.

It is strongly recommended that all the described steps should be performed at
4 °C to prevent sample degradation. After the conclusion, protein extracts should be
divided in single-use aliquots to avoid freeze-thaw cycles and stored preferentially
at —80 °C.

10.4.2 Protein Separation

Protein gel electrophoresis became a routine technique in biochemistry laboratories
decades ago for protein separation. It still remains today as a simple, fast and
powerful technique used in several proteomics applications. The most common
approach is based on protein separation by molecular mass—I1D SDS-PAGE.
However, the currently most effective protein gel-based separation methodology is
2D gel electrophoresis. This approach is based on protein separation by isoelectric
focusing (IEF) followed by protein molecular mass separation. Protein bands from
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1D gels or protein spots from 2D gels are selected for protein identification by mass
spectrometry. After selection, the protein gel plugs are enzymatically “in gel”
digested, usually with trypsin, and further analysed by mass spectrometry.

In the last years, high throughput proteomics approaches based on
liquid-chromatography (LC) online coupled with a mass spectrometer have been
progressively implemented. Usually, the protein extract is “in solution” enzymati-
cally digested generally with trypsin. Further, peptides are separated by CI18
reverse-phase LC chromatography. Multi-dimensional LC approaches may be
performed combining reverse-phase with strong cation exchange (SCX) or
hydrophobic interaction liquid chromatography (HILIC) for example.

10.4.3 Protein Identification

Mass spectrometry (MS) is currently the most efficient and informative approach
for protein identification. The simplest protein identification method is based on
Peptide Mass Fingerprint (PMF). In this approach, the experimental peptide masses
obtained from the mass spectra of the enzymatically, usually tryptic and digested
unknown proteins are compared with a database containing protein sequences. This
analysis is performed by a software that digests “in silico” a set of proteins
downloaded from a repository and further compares the experimental peptide peaks
with the theoretical ones providing a statistical analysis. The success of this analysis
fully depends on the information amount and quality of a specific protein sequence
database. UniProt is currently one of the best publically available protein sequence
databases. It is divided in two sections, Swiss-Prot and TrEMBL, in which the
number of protein sequences has grown significantly in the last years. Swiss-Prot,
manually reviewed and annotated, has grown from less than 100 thousand entries in
2000 to more than 500 thousand entries in 2015. More impressively, TTEMBL, the
non reviewed and automatically annotated section, has grown from less than
0.5 million entries to more than 50 million available protein sequences for the same
period. This increasingly available information is decisively contributing for the
success of the PMF approach.

Peptide fragmentation and sequencing by MS/MS, often combined with PMF, is
currently the most effective way to perform protein identification. The most com-
mon process is to perform a selective peptide collision against air or a gas. As a
result of the collision, peptides will dissociate producing several related ions. The
most common fragment ions are the N-terminal charged b-ions and the C-terminal
charged y-ions. Using proper software tools that compare the MS/MS information
with theoretical MS/MS data derived from “in silico” fragmentation of a protein
database such as UniProt will allow performing high-throughput “shotgun”
sequence analysis.

Cordero and collaborators established the Dicentrarchus labrax skin mucus
proteome map using 2DE followed by LC-MS/MS [35].
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10.4.4 Protein Quantification

2D gel electrophoresis is a simple and effective approach for evaluation of protein
expression. It allows performing gel-to-gel comparison. Some experimental
approaches use fluorescent dyes to label proteins, allowing run up to 3 samples in
one gel using a technique called 2D-DIGE (two-dimensional difference in gel
electrophoresis). Proper software that integrates statistical tools allowing the
determination of protein expression levels performs this analysis. Dietrich and
collaborators developed 1DE-LC-MS/MS and 2D-DIGE methodologies for quan-
titative Cyprinus carpio seminal proteome analysis [21, 36].

Isobaric labelling is performed in quantitative MS approaches. Peptides or
proteins are chemically labelled in specific amino acids. At the MS/MS fragmen-
tation, the labelled peptides will produce reporter tags allowing performing its
quantification. The currently available isobaric tags include isobaric tags for relative
and absolute quantitation, iTRAQ or tandem mass tags, TMT. Some mass spec-
trometers may also perform label-free proteomics approaches. An iTRAQ-based
quantitative proteomics approach was used for instance to investigate sea cucumber
Apostichopus japonicus infection by Vibrio splendidus [37]. Chemical dimethyl
labelling and label-free quantitative proteomics approaches have been developed to
analyse the Sparus aurata muscle tissue proteome [38]. Another gel-free pro-
teomics approach was performed on stickleback’s plasma. A label-free quantitative
proteome profiling allowed identifying 45 population-specific plasma proteins [39].
Edwardsiella tarda proteome, a pathogen prejudicial for aquaculture was analysed
by a gel-based approach. A comparison between a virulent isolate and an avirulent
strain was performed. More than one hundred differentially expressed proteins have
been identified [40].

To better understand the freshwater crayfish reproduction the Astacus astacus
spermatophore proteome has been characterized. A gel-free based approach has
been developed for protein identification including protein label-free quantification
[41]. Long designed a combined transcriptomic and proteomic approach were
applied to study Oncorhynchus mykiss (rainbow trout) infected by Aeromonas
salmonicida [12]. The quantitative protein expression levels were accessed using
the iTRAQ methodology.

Other study focused in the detection of cryo-preservation-induced alterations in
protein composition of trout semen with complementary proteomics approaches
including 1DE SDS-PAGE-pre-fractionation combined with LC-MS/MS and 2DE
followed by MALDI-TOF/TOF identification [42].

One increasingly popular MS-based protein quantification approach relies on
selective quantification of surrogate peptide(s) in a digested protein sample being
referred as multiple or selective reaction monitoring (MRM or SRM). Groh and
collaborators developed a targeted proteomics method based on SRM to analyse
protein expression in zebrafish during gonad differentiation [43].
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10.4.5 Protein PTMs Characterization

Protein PTMs can be relatively simple such acetylation, formylation or phospho-
rylation or highly complex such as glycosylation. The major challenges on PTMs
proteomic approaches rely on the location determination of the amino acid site
where the PTM is sited and how to unravel intricate PTM structures such as glycans
being MS/MS fragmentation critical to characterize complex PTMs. Unlike protein
identification analysis, it still remains a huge challenge to develop sophisticated
software tools and proper PTM databases to perform an efficient and automated
MS/MS ion fragment assignment required for proteomics PTM characterization. Jin
and collaborators characterized mucin O-glycosylation on freshwater acclimated
Atlantic salmon by LC-MS/MS mass spectrometry [44].

10.5 Welfare and Nutrition in Fish Farming

Fish welfare and stress are important issues to aquaculture mainly because of public
perception, marketing, product acceptance, and production efficiency, quality and
quantity [45—47]. Fish are vertebrates and though they share many traits in common
with the more familiar intensively farmed animals such as pigs, chickens or cows.
However, due to the separate evolutionary history and different adaptation needs,
they have a number of special features that are relevant to the way welfare is
approached. Fish welfare is in that sense a complex concept, which underlines the
importance of a multidisciplinary and holistic approach in its study. Proteomics can
therefore be an important part of the toolset required for such studies, ensuring that
marine animals are reared in an environment that optimizes their capacity to cope
with unavoidable challenges/stress [2]. Also it is important to understand that stress
responses will not provide all the necessary information about fish welfare, since in
aquaculture this last one is largely associated with tertiary effects of stress response
that are generally indicative of prolonged, repeated or unavoidable stress [47-49]
that is mostly related to maladaptive effects on growth, reproductive function,
immune function and disease resistance [50].

There is a significant number of proteomics studies in aquaculture targeting areas
of research related to welfare. These are mostly focused on health aspects in fish
organs/tissues/fluids like the liver, brain, skeletal muscle, blood plasma and
osmoregulatory and immune-related organs and tissues. Of these, the liver due to its
central role in key metabolic processes and the blood plasma due to its non-evasive
collection, are by far the most used ones.

Fish production is a factor of stress induction as it involves management practices
and environmental sources with influence in fish welfare. Proteome changes in
several tissues have been reported in fish submitted to high stocking densities [51,
52], handling [52, 53], pre-slaughter stress [54, 55], hypoxia [56, 57], anoxia [58-60],
hyperoxygenation [61], osmotic [62-67] and temperature changes [25, 68-70]. Also
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proteomic approaches have been used as an attempt to establish welfare biomarkers in
farmed fish [52, 71-73] with several proteins identified.

Another important field of aquaculture research covered by proteomics is fish
nutrition. Due to increasing demand for fish oil and fishmeal in aquafeeds, more
sustainable alternatives to the traditional diet formulations, such as plant-derived
oils and proteins are emerging. Few papers interestingly report the fish proteome
response to these new fish meals, as a new insight into the response of fish meta-
bolism to dietary substitutions [17, 74-79]. Furthermore, the impact on the fish
proteome of specific diet formulations, formulated to mitigate disease effects has
been reported [80].

10.6 Proteomics Applied to Safety and Quality
of Aquaculture Products

Aquaculture products have a great importance concerning food security and
according to human health perspective there is an extensive evidence of several
benefits associated to their regular consumption. However, along with the benefits,
there are several potential risks, especially related to food-borne diseases and
authenticity, which emphasizes the challenge to guarantee the safety and quality of
aquaculture products.

Proteomic approaches have proven to be promising to evaluate the safety and
quality of aquaculture products, being applied either as a monitoring tool or for
discovery of potential biomarkers [2, 81-84]. Indeed, the identification of proteins
and their function in a specific physiological condition may unequivocally reveal
the mechanisms underlying the safety and quality changes, which can be crucial for
guarantee the consumer satisfaction and to protect the aquaculture industry from
financial damages. The hazard analysis carried out to ensure food safety presup-
poses the identification and characterization of chemical, biological or physical
agents capable of causing quality loss. In this field, proteomics has been applied to
the identification and biomarker exploration of (1) biotoxins and other environ-
mental contaminants (industrial organic contaminants, environmental inorganic
contaminants and veterinary drugs); (2) microbial contaminants (pathogenic and
spoilage bacteria, virus and protozoan); and (3) allergens (Table 10.2).

Filter-feeding bivalve molluscs are often contaminated by biotoxins and pro-
teomics techniques have been used to study the changes in protein expression and
potential biomarkers either by the toxin producers or mechanisms of tissue response
[85-87]. Furthermore, the identification and characterization of dinoflagellates
proteome have also been explored to early discriminate toxic and nontoxic strains
[88, 89]. Polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons
(PAHs) and alkyl phenols are industrial organic compounds well studied, since they
can cause severe effects on aquatic organisms. The identification of distinct protein
expression signatures (PES) provided the knowledge of key proteins possibly
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involved in toxicity mechanisms of PCBs in bivalve molluscs [90], and the
potential discovery of sensitive biomarkers in cod plasma after chronic exposure to
crude oil and produced water [71]. Likewise, proteomic approaches have been
applied to assess the effects and to find potential biomarkers in sentinel organisms
(clams) exposed to inorganic environmental stressors such as copper, arsenic and
cadmium [91, 92]. Although briefly mentioned in this work, aquatic plants, which
are largely consumed in Asian countries and nowadays in European countries as a
part of sushi, can accumulate high levels of heavy metals, thus future studies should
employ proteomics techniques to identify these chemical contaminants in such
organisms. On the other hand, the intensification of aquaculture has been related to
the increasing use of chemotherapeutics. Although the marked improvements in
laboratory methods to detect residues of antibiotics, according to our knowledge
only a study relying on proteomics technologies in antibiotic identification has been
developed in shrimps [93].

The identification of spoilage and pathogenic bacteria isolated from fishery
products is another issue of great importance regarding to aquaculture proteomics,
where MALDI-TOF MS/MS has been successfully applied [94-98]. Studies on the
bacterial proteome to test the effectiveness of food preservation techniques and the
determination of potential markers for bacterial disease resistance in fish have also
been developed [99, 100]. Proteomics has allowed further novel insights into the
molecular pathogenesis of virus-associated shrimp and fish diseases [101-105] as
well as the understanding of the susceptibility of two oyster species to a protozoan
infection [106].

Allergic reactions are frequently reported as a consequence of seafood con-
sumption. The major fish and crustacean allergens are the proteins parvalbumins
beta and tropomyosin, respectively. Proteomic investigations towards identification
and quantification of allergens in aquaculture products are still scarce [107, 108],
however efforts have been made to identify novel allergens [109] and characterize
the potential allergenicity of transgenic and non-transgenic fish [110]. Innovative is
the approach proposed by Rodrigues and collaborators with the use of proteomics
to track the modulation of parvalbumin expression in European seabass exposed to
diets aimed to reduced its allergen content with the purpose of a low allergen
farmed fish as the end product. In this field, studies regarding the stability of the
allergenic proteins subjected to food processing and digestion are still missing.

Proteomics technologies have also proved to be very useful in the quality
assessment of aquaculture products, and research studies have been developed on
the following subjects: (1) traceability and authentication; (2) production process;
(3) storage and processing; (4) sensorial and nutritional quality; and (5) function-
ality (Table 10.3).

So far, several studies have shown the effectiveness of proteomics approaches
for discriminate and guarantee the traceability and authentication of aquaculture
products, especially fish and crustaceans [111-118]. Furthermore, the use of protein
biomarkers in cultured fish, particularly in edible ante mortem tissues, is an issue of
high significance. Pre-slaughter conditions may influence the post mortem muscle
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integrity and factors such as stress, physical activity, crowding, growing and
slaughtering conditions and life cycle were already studied by using proteomic
approaches [52, 54, 69, 119-122]. On the other hand, the processes occurring
during post mortem metabolism also produce several changes in seafood freshness
and quality. Proteomics has been used to characterize post mortem changes during
cold storage [123-126] and processing (either by cooking, food preservation
treatment, addition of Calcium and Magnesium or fermentation) [127-130].
Additionally, oxidation modifications (e.g. carbonylation, thiol oxidation and aro-
matic hydroxylation and Maillard glycation) during storage and processing treat-
ments significantly affect the sensorial and nutritional quality of fishery products,
thus proteomics studies on the protein oxidation have also been performed [131-
134]. Finally, recently proteomics techniques have also been applied to investigate
functional food proteins of fish [135]. Although proteomics has only been sparingly
applied on this field, it can be of great interest for potential biotechnological
applications.

According to the above studies, the increasingly application of proteomics may
provide valuable information regarding safety and quality of aquaculture products,
enabling the evaluation of benefits and risks to consumer and industrial process
improvements. In the future, the optimization and development of more
cost-effective and sensitive proteomic technologies may allow its routine use.

10.7 Final Remarks

This book chapter gives a brief overview of the use of proteomics in aquaculture
nowadays and illustrates some of the main constrains in the aquaculture industry
and how science and state of the art technologies, in particular proteomics can be
considered a turning point in terms of addressing issues like welfare, nutrition,
safety and quality of farmed fish.

There are nevertheless challenges inherent to a fast growing industry like
aquaculture that need to be addressed. Limitations in the technology both at the
level of gene annotation for most fish species and its integration with other Omics
technologies like metabolomics or transcriptomics, tend to postpone some of the
knowledge and answers to problems like the establishment of protein biomarkers
for fish welfare, disease or condition. This is a common problem to other areas of
research using proteomics and we believe that the technological advances and the
awareness for more and easier financing opportunities in this area will push this
industry into the next level in a near future.

Another main challenge where proteomics can play an important role is a target
of the Blue Growth framework by FAO that promotes the sustainability of all the
aquaculture production process focused both on the technology and the end pro-
duct; the farmed fishery products. As a response to this challenge and a clear
adaptation effort, new emerging systems like Aquaponics where conventional
aquaculture and hydroponics live in a symbiotic environment, has been developed.
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Also, the world population growing demand for fish as part of its daily diet
mainly due to the emerging countries raising economy and the global awareness for
a healthier and “cleaner” protein, leaves no option to aquaculture but a major effort
mainly based on solid scientific knowledge to overcome these issues.
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Chapter 11
Wool Proteomics

Jeffrey E. Plowman and Santanu Deb-Choudhury

Abstract The recent sequencing of the wool genome has considerably assisted the
characterisation of the proteome of wool fibres. This has been achieved by the
coupling of mass spectral sequence identification to the traditional two-dimensional
gel electrophoresis, resulting in the identification of most of the protein spots on the
two-dimensional map. More recently, gel-free proteomic analysis of whole wool
protein digests has resulted in improved sequence coverage of some proteins and
the identification of novel isoforms of some of these proteins.

Keywords Keratin - Keratin associated protein - Electrophoresis « Mass spectrometry

Abbreviations

KAP Keratin Associated Protein

HSP High Sulphur Protein

UHSP  Ultra-High Sulphur Protein

HGTP  High Glycine-Tyrosine Protein

2DE Two-Dimensional Electrophoresis

MALDI Matrix Assisted Adsorption/Desorption Ionisation
TOF Time of Flight

MS Mass Spectrometry
LC Liquid Chromatography
ESI Electro-Spin Ionisation

11.1 Introduction

Proteins are the major component of wool contributing up to 98 % of the total mass of
some fibres [1]. Of these, the keratinous proteins constitute 85 % of the protein material
of the fibre [2]. They are further divided into two classes: keratins, and keratin associated
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proteins (KAPs), of which the former make up 58 % of the total [3]. Keratins, with their
o-helical core, make a significant contribution to the structural and mechanical prop-
erties of the fibre [4]. The primary building block is a coiled-coil heterodimer formed
from the association of one acidic Type I keratin with a neutral-basic Type II keratin.
Two of these heterodimers then associate in an anti-parallel manner to form a tetramer;
which then undergo further associations to ultimately produce the macrofibrillar
structures that occupy the major part of the cortical cells in wool [5].

The mechanical properties of wool are also dependent on the KAPs [6], of which
at least three different classes have been classified. These are the high sulphur
proteins (HSPs) with cysteine contents of less than 30 mol%; the ultra-high sulphur
proteins (UHSPs) with cysteine contents higher that 30 mol%; and the high
glycine-tyrosine proteins (HGTPs) [6]. In reality this classification system is
somewhat arbitrary, because some UHSPs have cysteine contents just below
30 mol%, while other KAPs have been identified that do not fit into any of these
classes. The whole proteome of wool also includes a number of non-keratinous
proteins, including the keratin anchor proteins desmoplakin and desmoglein, and
proteins found in the intermacrofibrillar material between the keratin macrofibrils,
in the cellular remnants of the cortex and cuticle, and in the medulla in some fibres.

The wool proteome has been analysed by a number of approaches, of which
two-dimensional gel electrophoresis (2DE) has been at the fore. Initially non-
equilibrium approaches were used, whereby iodoacetic acid alkylated wool protein
extracts were separated in the first dimension at a fixed pH and identified by amino
acid profiling [7]. This was superseded by the use of isoelectric focusing of wool
proteins alkylated with iodoacetic acid [8] and later iodoacetamide [9]. More
recently there has been a move towards identification of proteins first by mass
spectrometry (MS) peptide mass fingerprinting and later by matching peptide
sequences by MS/MS. More recently gel-free proteomic approaches have come to
the fore [10] whereby tryptic digests of whole or partial wool extracts are analysed
directly by mass spectrometry. In this chapter, we briefly summarize the use of
these different proteomics approaches to assess the protein content of wool, and
how these have led to the current understanding of the wool proteome.

11.2 Keratin Protein Diversity

Successful identification of proteins using proteomics is entirely dependent on the
sequences available in international sequence databases. In that respect wool keratin
proteins were, for a long time, poorly served. Initial studies indicated that there
were four Type I and four Type II keratins [11, 12] but more recent studies have
revealed a total of 10 Type I and 7 Type II keratins (Table 11.1) [13, 14]. The
KAPs are more complex than the keratins and initial studies indicated that there
were about eight or nine families [6] but now 17 families have been identified in the
wool proteome. Within these families there are 89 known individual KAPs, and an
additional 44 _polymorphic variants of these (Table 11.2) [15-21].
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Table 11.1 Known human hair and wool keratins and their location in the fibre

Wool Hair Location
Type 1 K31 K31 Cortex

K32 K32 Cuticle

K33a K33a Cortex

K33b K33b Cortex

K34 K34 Cortex

K35 K35 Cuticle and Cortex

K36 K36 Cortex

K37 Cortex—vellus hair (humans only)

K38 K38 Cortex

K39 K39 Cortex (sheep); cuticle and cortex (humans)

K40 K40 Cuticle (sheep); cuticle and cortex (humans)
Type I K81 K81 Cortex

K82 K82 Cuticle

K83 K83 Cortex

K84 K84 Cuticle (wool); tongue (humans)

K85 K85 Cuticle and cortex

K86 K86 Cortex

K87 Cortex

Another issue regarding keratin proteomics is that of nomenclature, in particular
the continued use of the early nomenclature in public sequence databases. The
original names given to the keratins were based on their separation by elec-
trophoresis into three components (namely 5, 7 and 8) of which 7 was found to
consist of three sub-components and 8 of four sub-components [11, 12]. Since then
their nomenclature has been revised; in 1997 to the KRT and K prefix for the gene
and protein respectively, and more recently a universal system encompassing both
the trichocyte and epithelial keratins was proposed [22].

Likewise, the nomenclature of the KAPs was originally based on their fractional
separation. The four members of the B2 family were resolved by DEAE-cellulose
chromatography after the isolation of two components, B1 and B2, by ammonium
sulphate precipitation [11]. In contrast column electrophoresis of the HSP fraction
of wool saw it separated into two poorly resolved bands, I and III, the latter
ultimately being further fractionated on Sephadex G100 into BIITA and BIIIB [11].
This nomenclature persisted until quite recently when the KAP nomenclature was
first introduced [23] and subsequently refined [24].

Nevertheless, elements of the old nomenclatures still exist in international
databases, meaning that care and vigilance is required when interpreting protein
matches in database searches of mass spectral data.
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Table 11.2 Known human ovine and caprine keratin associated proteins [24] (Yu, Personal

J.E. Plowman and S. Deb-Choudhury

communication)

Class Family Sheep Human Location

High sulfur KAP1 4 (29) 4(2) Cortex
KAP2 3 5+1 Cortex
KAP3 3+1 3+1 Cortex
KAP10 1 11 + 1 (10) Cortex
KAPI11 1 1 Cortex
KAP12 1 4+1 Cuticle
KAPI13 2 4 +2 Cortex/cuticle
KAP15 1 1 Cortex/cuticle
KAP16 1
KAP23 - 1 Cortex/cuticle

Ultra-high sulfur KAP4 27 11 +1 Cortex
KAPS 4+1(6) 12+2 Cuticle
KAP9 7 T7+1 Cortex
KAP17 1 Cuticle

High glycine-tyrosine KAP6 4 4) 3 Cortex
KAP7 12 1 Cortex
KAP8 2 (3) 1+2 Cortex
KAP16 4 Cortex
KAP19 4 7+4 Cortex/cuticle
KAP20 - 2 Cortex
KAP21 2 2+1 Cortex/cuticle
KAP22 - 1

Other KAP24 1 1 Cuticle
KAP25 - 1
KAP26 1 1
KAP27 1 1

Total 74 + 2 (44) 88 + 17 (12)

Notes

1. Numbers after “+” represent pseudogenes
2. Numbers in brackets are genetic variants of family members

3. Human KAP16.1 is a HSP, whereas the goat and sheep KAP16.1s are HGTPs

11.3 Gel Proteomic Analysis of Wool

11.3.1 Proteomic Analysis of the Keratins

Analysis of the wool proteome using the 2DE approach has its own technical
challenges because keratin proteins overlap considerably on 2DE maps. Type 11
keratins resolve over a broad pH range and migrate to the same molecular weight
region in the second dimension. Resolution of Type I keratins is even lower than
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the Type II keratins because they tend to migrate to a narrow region in a 2DE
map. It is of considerable importance that individual keratins can be unequivocally
located and identified in 2DE maps because their expression levels can differ
between breeds of animals and also across the surface of the skin. Keratins in wool
exhibit strong sequence homology with 92-93 % sequence identity between some
of the Type Is and Type IIs. Characterisation of these proteins therefore requires
methods of identifying unique peptides belonging to these proteins. The conven-
tional approach, using spot excision followed by enzymatic digestion and mass
spectrometry identification, while useful has proved inadequate because of the high
homology between the keratins. It is also difficult to excise spots from a tight cluster
of proteins, especially from the region of the gel where Type I proteins migrate
(Fig. 11.1). This is further confounded by various sample handling steps that result
in sample losses.

To circumvent these problems a complimentary technique to the conventional
approach using matrix assisted laser desorption ionisation (MALDI) imaging has
been used. This technique produces peptide masses that provide additional infor-
mation on the localisation of these spots via an order of magnitude increase in
analytical resolution (from a gel spot scale ~1 mm diameter to a laser beam
scale ~80 um diameter) [25].

Briefly, a 2DE gel region with the highest degree of overlapping Type I keratins
was excised intact and in-gel digested with trypsin. The peptides thus produced
were blotted through an UltraBind membrane (US450 affinity membrane, Pall Life
Sciences, USA) incorporating immobilised trypsin on to a PVDF membrane using a
semi-dry transfer procedure. This treated membrane was then sprayed with the
MALDI matrix (o-cyano-4-hydroxy-trans-cinnamic acid) and then covered with a
thin layer of conductive gold (~5 nm) to reduce the charging effect encountered
during MALDI imaging and the MALDI image acquired (Fig. 11.2). The spatial
distribution of the peptide masses corresponding to K31, K34, K35, K33a and
K33b are shown in Fig. 11.1. Peptide masses both unique and common to Type I
keratins identified through imaging are listed in Table 11.3. MALDI imaging of the
gel region provided interesting data in that the distribution of the Type I keratins

pH 5.0 5.5 6.0 6.5
K83 K85 =
P L e o
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Fig. 11.1 A 2DE map of wool keratins separated over the pH range 4-7
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Fig. 11.2 The distribution of the ions across the PVDF membrane related to peptide sequences
from K31, K34, K35, K33a and K33b. Images b-i show the distribution of peptides across this
area: a imaged area of the 2-DE gel; b distribution of the peptide with m/z 1586.85, ¢ distribution
of the peptide with m/z 1595.75, d distribution of the peptide with m/z 2192.08, e distribution of
the peptide with m/z 2267.15, f distribution of the peptide with m/z 2271.07 g distribution of the
peptide with m/z 2282.17, h distribution of the peptide with m/z 2584.16

were determined to be more diffuse compared to their distribution implied by the
manual excision of spots method. MALDI imaging clearly showed that the distri-
bution of K34 overlapped with K33a, K33b and K35. K35 was also seen to be
present in the K31 region.

An advantage of using the MALDI imaging approach is the observation of high
molecular weight peptides (ranging from m/z 1500 to m/z 3400) and the release of
new peptides which are not seen by the traditional approach. Avoidance of organic
solvents to extract the tryptic peptides coupled with the electroblotting step could
have contributed to this. One drawback to this procedure is the lack of useable
MS/MS data, due to low signal intensity of precursor ions. However, it is an
interesting development and serves as a complementary technique to the traditional
manual excision and in-gel digest procedure.
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11.3.2 Proteomic Analysis of the KAPs

While keratins and some KAPs focus in the acidic region, other KAPs focus at
alkaline pHs [26]. Keratins also dominate 2DE gels and to maintain good resolution
of keratins while adequately visualising KAPs 2 mm thick second dimension gels
overloaded with extract are necessary. Nevertheless, selective enhancement of the
KAPs can be achieved through modifications to the standard extraction conditions
[26, 27]. Keratin extractability is pH dependent and can be reduced to almost zero
by lowering the pH from 9.3 to 5.5. The extractability of the KAPs is also affected
by this but not as severely. Keratins can also be removed by lowering the urea
concentration from 8 to 3 or 4 M, although this results in the loss of KAP bands
below 10 kDa and the lowered extraction of another between 15 and 20 kDa.
Lowering the dithiothreitol concentration from 50 to 2.5 mM also removes keratins
from the extract.

Reducing the extractability of keratins by these procedures has enabled the
identification of the KAP1 and KAP3 HSP families in the acidic regions by
MALDI-TOF mass spectrometry. Up to four members of the KAP1 family have
been found to separate between 20 and 30 kDa in the 2DE map (Fig. 11.2) but
there is considerable variation in the expression of the members of this family both
between and within breeds. Studies have shown that KAPI1-3 and KAP1-4 are
always present in wool fibres but the expression of the other proteins is variable
[28]. The KAP3 family appears as a short train of spots between 10 and 15 kDa,
with KAP3-2 at a slightly lower molecular weight than KAP3-3 and KAP3-4. The
latter two proteins can also be separated using narrow range immobilised pH gra-
dient strips. The other KAPs focus between pH 9 and 10, and the HSPs at higher
molecular weight than the HGTPs (Fig. 11.3).

11.4 Gel-Free Wool Proteomics

11.4.1 Proteomic Analysis of the a-Layer

Both keratin and KAPs have been detected in the cuticle although it lacks the
organised structure of the cortex. However, the cuticle has proved relatively
intractable to the standard extraction conditions until recently, when it was found
that it was possible to extract the exocuticle layer by replacing dithiothreitol with
tris(2-carboxyethyl) phosphine in the extraction buffer. This opened the potential
for analysis of the exocuticle layer by a gel electrophoretic approach [29]. The
endocuticle can also be digested by enzymes such as Pronase E or trypsin, and it is
possible to isolate the cuticle a-layer by tris(2-carboxyethyl) phosphine extraction
followed by Pronase E digestion.
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Fig. 11.3 The 2DE map of wool keratins and KAPs over the pH range 3-11, with an inset
showing the further resolution of the KAP3 family using pH 5-6 immobilised pH gradient

Table 11.4 Amino acid residue sequences derived from ESI-MS/MS analysis of peptides isolated
from the 2-nito-5-thiocyanobenzoic acid digest of the a-layer

Observed m/z Primary structure (MS/MS) Sequence homology with sheep
ptoteins (BLAST)

442.02 CVPV.C KAP5-5; CVPV.C (46-50, 58-90,
141-145, 188-192)

494.01 CACSS.C KAP5-5; CSCSS.C (151-156)

562.03 CEPSC.C KAP1-1; CEPSC.C (152-157)

The a-layer is the most intractable part of the wool fibre, proving relatively
immune to enzymic or acidic reduction, however 2-nito-5-thiocyanobenzoic acid
has proved to be capable of partially digesting it [29]. From this approach it has
been possible to establish that the a-layer contains the UHSP KAPS5-5 and proteins
similar to the HSP KAP1 family (Table 11.4).
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11.4.2 Gel-Free Proteomics of Whole Wool

The properties of wool make it a difficult substrate for proteomic investigations.
Complications arise from a limited number of basic residues in KAPs and the
presence of prolines after some of these basic residues result in low proteolytic
digestion yield for downstream mass spectrometry analysis. Identification of wool
keratin proteins from 2DE gels can be complex and a viable alternative is to use
gel-free proteomic approaches.

Wool protein extracts, typically obtained using chaotropes such as urea in the
presence of a reducing agent, can be analysed using mass spectrometry following
pre-fractionation chromatography that may include various ion-exchangers. Four
approaches using gel-free proteomic analysis have been used for increasing the
sequence coverage and improving the identification of wool proteins. The first
approach involved 1D-LC MS/MS runs of the whole wool protein enzymatic
digest. The second approach involved fractionation of enzymatic wool protein
digests using strong cation exchange chromatography. The third and fourth
approaches involved separation of the intact solubilised proteins using either strong
anion exchange or strong anion exchange-hydroxyapatite chromatography prior to
enzymatic digestion of the fractions. The whole wool protein digest, as in the first
approach, was analysed using LC-ESI and LC-MALDI runs. The digests were
resolved by nanoflow HPLC with an analytical column (C18, 30 cm, 75 um ID)
using reversed phase gradient conditions. Digests obtained from the second, third
and fourth approaches were analysed using only LC-ESIL

These approaches generated partially complementary, partially overlapping data
sets allowing high significance identifications along with optimal sequence cover-
age. However, when working with multiple data sets, combining MS and MS/MS
data across experiments for protein identification can result in extremely large peak
list files. This results in searches taking an extremely long time to complete and the
results become difficult to interpret. To circumvent this, a new approach was
employed wherein data sets were searched individually using appropriate param-
eters and significant results subsequently combined into protein and peptide lists
[10].

The high abundance of proteins such as keratins and the presence of lower
abundance proteins such as KAPs in keratinous materials like wool contribute to a
high dynamic range of protein mixtures. The greatest advantage of the multitude of
MS/MS spectra obtained from the combined gel-free analyses is the increase in
sequence coverage and specificity for lower abundance proteins. KAPs exhibit
extensive sequence similarity and data from a single analysis is not enough to
distinguish between isoforms. Combining data from multiple analyses has the
added advantage of identifying discriminating peptides allowing unequivocal
identification of certain isoforms of these proteins. Using these approaches, 76
proteins were identified using 1D-LC-MS/MS and LC-MALDI, 21 additional
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Fig. 11.4 Number of
proteins identified with the
three gel-free approaches.
A 1D LC-MS/MS and
LC-MALDI B 2D
LC-MS/MS; C Protein
separation + LC-MS/MS

C

proteins by 2D-LC-MS/MS and another 16 unique proteins by protein separation
followed by LC-MS/MS (Fig. 11.4).

11.5 Conclusion

Analysis of the proteome of wool is complicated by the high degree of homology
among its constituent keratins and KAPs and it is therefore highly dependent on
sequence information in international databases. Nevertheless good progress has
been made using a combination of gel and gel-free proteomic approaches. To date
most of the major cortical keratins and KAPs visible on 2DE gels have been
identified and some progress has been made on identifying proteins in the cuticle, in
particular the a-layer. In addition, gel-free approaches have extended this by
increasing the sequence coverage of low abundance proteins, allowing the
unequivocal identification of certain isoforms of these proteins.
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Chapter 12
Proteomic Research on Honeybee

Yue Hao and Jianke Li

Abstract Honeybee, as the most valuable insect pollinator, plays great roles for
both ecological balance and agriculture. Although people started to investigate
honeybee biology at the beginning of 20th century, it’s not until the year 2006 that
honeybees were largely explored at the molecular level, when the genome
sequencing of Apis mellifera (A. mellifera) was finished. Since then and with the
advances in relative protein technologies, proteomics has becoming one of the most
efficient tools in addressing all aspects of honeybee biology. This chapter looks at
recent developments in proteomic studies of honeybee using mass spectrometry
(MS) and proteomic techniques on almost all the aspects of honeybee, including the
growth stages, important tissues and organs, the caste differentiation, function
transitions of worker bees, the reproduction of queen bees, and honeybee products
such as royal jelly.

Keywords Honeybee - Growth stage - Development of organs - Reproduction -
Hemolymph - Royal jelly

12.1 The Contribution of Honeybee to Agriculture

The honeybee is the most valuable insect in the world for their role as pollinator. The
crops that benefit from honeybee pollination include cucumbers, blueberries,
watermelons, apples, squash, strawberries, melons, peaches, alfalfa, cotton, peanuts,
and soybeans, etc. According to a report by Cornell University, the value of honeybee
pollination to United States agriculture is 11.68 billion US dollars in the year 2009,
which accounts for near 80 % of the total value contributed by insect pollination [1].
In China, the average economic value contributed by honeybee pollination in the
years 2006-2008, was estimated to be >300 billion Chinese Yuan, accounting for
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12.3 % of the gross output value of agriculture in China [2]. Scientists from France
and Germany estimated that the worldwide economic value of the pollination by
insect pollinators, mainly bees, was over 217 billion US dollars in the year 2005,
which represented 9.5 % of the value of the world agricultural production used for
human food that year [3]. Honeybee pollination has more than what can be estimated
here. Without the production of fruit, the consequence of pollination, there will be no
seeds to be spread out to sustain the plant reproduction. And the crops dependent on
honeybee pollination are of vital important in providing food source for wild animals
as well as economical animals. So the importance of honeybee goes far beyond what
it plays in agriculture, it also plays great roles for both ecological balance and human
life. If the bee disappeared off the surface of the globe then man would only have four
years of life left, Elbert Einstein said. No more bees, no more pollination, no more
plants, no more animals, no more man (Fig. 12.1).

Apart from the pollination service provided to ecosystem, human also benefits
from a wide range of bee products. Honeybees convert floral nectar into honey and
store it as their primary food source in their waxy honey combs. Although the
specific composition, color and flavor of the honey depend on the flowers foraged by
the bees, the main components of honey are fructose, glucose and maltose, which
occupy almost 77 % of the dry weight. Besides sugars and other carbohydrates,
honey also contains trace amounts of protein, vitamins and minerals. Human prefer it
as sweetener over sugar not only because the distinctive flavor, but also for the health
benefit. Honey possesses anti-bacterial activities [4]. Some evidence shows that
honey is effective as a treatment of coughs, and other evidence show that honey can
be used for wounds and burns. Million tons of honey is produced annually world-
wide now. According to the statistic data from Food and Agriculture Organization of
the United Nations Statistics Division (FAOSTAT), honeybee production of China
accounted for about 28 % of the world total production in the year 2013. Regarding
to other bee products such as royal jelly, bee pollen, bee wax and bee venom, they all
have their high economic value and the importance for promoting human health.

Fig. 12.1 Honeybee forages pollen on the flowers and the flowers are pollinated (photographed
by Dr. Jianke Li)
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12.2 The Research History of Honeybee
and General Proteomic Tools

Although honeybees play a vital role in agriculture as pollinators, it’s not until the
beginning of 20th century that people started to investigate honeybee biology. The
first research paper on honeybee biology is about sex determination and was pub-
lished on Science journal in the year 1904. Afterwards a wide cascade of biological
issues related to the behaviors, reproduction and etiology were studied. For example,
the artificial fertilization of queen bees, bees and perforated flowers, etiology of
European foul-brood of bees, the division of labor of bees, and embryogenesis of
bees. For a hundred years, because of the technical limitations, most studies of
honeybee did not go beyond the description of the whole colonies or at the single
animal level, and bees were rarely studied at the molecular, biochemical or cell
biological level in the way that other systems have such as Drosophila. Despite
regarded as essential model organism for understanding social behavior for a long
period of time, honeybees are largely unexplored at the molecular level in devel-
opmental biology, neurobiology, genetics, immunology, and aging. This situation
has enormously changed since the finish up of the genome sequencing of A. mel-
lifera (western honeybee) in the year 2006, when the honeybee research entered the
new era of functional genomics. As one of the most important functional genomic
tools, proteomic has becoming the most emerging tool in addressing all the aspects
of honeybee biology, including physiology, behavior and pathology.

With the advances in technologies, such as protein separation techniques, protein
identification techniques, protein chemistry science and bioinformatics, the deci-
pher of honeybee biology via proteomics has made great progress during the last
ten years. At the beginning stage of 21 century, two demisional electrophoresis
(2DE) combined with mass spectrometry (MS) was most often used approach to
identify honeybee proteins. The laborious nature of 2DE hampers throughput and
has only recently been minimized with advances in automation. Only the most
abundant proteins were identified, as the dynamic range of most protein
labels/stains is small compared to the dynamic range of protein levels in a given
proteome; proteins with extreme pl (<4 or >9) and masses <15 or >200 kDa are
hard to be resolved, and complex samples frequently require multiple gels to
resolve the entire pl and Mr range; membrane proteins are still under-represented
due to their poor solubility in the sample buffer and resolution in the gel. As a
result, the 2DE-based the proteomics can only represent small fraction of protein in
the honeybee protoeme. To improve the depth of proteome coverage, the MS based
proteomics has becoming the most promising platform with the fast development of
accuracy, sensitivity and high resolution. MS-based proteomics has been widely
used in investigating large spectrum of the molecular underpinning regarding to the
honeybee biology and bee products. These investigations help us gain significant
new understanding of the physiology and behavior of honeybee both at qualitative
and quantitative levels. Moreover, the proteomic research of protein modifications
of honeybee biology and bee products have also been carried on at various levels,
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where significant findings yielded to address the questions about the regulatory
mechanism and molecular interaction networks in honeybee life.

As it is known that proteomics can tell us all the proteins that exist in the specific
cells, tissues and organs, at particular times, and this conceptual breakthrough has
shifted our protein research from traditional “one at a time” to the “overall per-
formance” and “systematic associated changes”. For honeybee specifically, this
novel concept help us “sidestep the difficulties” since that the gene editing tools
were not well developed as the other well-studied organisms, but still surprised and
have been continuing surprising us with various discoveries and implications on
honeybee physiology, behavior, pathology, and many others.

Here we review the advances of proteomics in the research of all the aspects of
honeybee, including the growth and organs, the caste differentiation, function
transitions of worker bees and the reproduction of queen bees. We also summarize
the progress of proteomic research on honeybee products.

12.3 Proteomic Research of Honeybee Physiology
and Behavior

12.3.1 Growth Stages

A healthy honeybee hive usually has more than 20,000 bees in the summer, with its
maximum population during the time of storing surplus honey. Almost all of these
are female workers, along with a queen and hundreds of male drones. The queen
lays as many as 1500 eggs each day during the active season, and start laying fewer
eggs when temperature drops. During winters the queen stops laying eggs and the
population reduces to around 10,000, which saves food from feeding young bees so
as to make the colony lives longer. Both the queen and worker bees are developed
from fertilized eggs. Drones are resulted from unfertilized eggs, so they only carry
half of the chromosomes.

12.3.2 Egg Stage

Honeybees go through 4 important phases in their life in the cells of wax comb:
egg, larva, pupa and adult. Honeybee embryo is rod-like shape with sizes varied
markedly. For A. mellifera, the length of an egg is about 1.7 mm, and the width
range is around 0.35 mm [5]. The egg stage is about 72 h, during which the weight
of egg decreases about 30 % [5]. Although not fed, honeybees start their organ
formation in egg stage. A tracheal network became visible even before hatching [6].
Honeybee embryo seems quiet while undergoing very active metabolism.
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A study using 2-DE based proteomics revealed that a total number of 38
abundant proteins are present across the embryonic development of worker bees of
A. mellifera [7]. Of these, 21 proteins are identified to be or be related with energy
metabolism, heat shock, cytoskeleton, antioxidant protection and growth factors.
Many of these proteins are found to be significantly up-regulated during the age of
embryos. For example, F1 ATP synthase subunits, which is accounting for the ATP
generation, tubulin, which constitutes the major component of cellular skeleton,
thioredoxin peroxide, protecting against the oxidative stress, and lethal 37Cc,
required for growth phase transitions. The fast accumulation of these proteins are
called by cell divisions, tissue metamorphosis and self-saving, which might be of
higher priority to the embryogenesis of honeybee. A similar research on drone
embryogenesis also verified that proteins involved in carbohydrate metabolism,
energy production and development are most abundant in 48 h old and 72 h old
eggs, suggesting that organogenesis and cell differentiation of drone mainly occur at
the middle to late stage of embryogenesis [8].

A recent MS-based in-depth proteomics with high resolution and high sensitivity
was performed on the embryogenesis of eggs that intended to be worker bees and
identified 1460 proteins of all the three ages [9]. The “core proteome” is composed
of 585 proteins, which are mainly involved in translation, folding/degradation,
carbohydrate metabolism, transporters and development [9]. The proteome of dif-
ferent ages are dynamically changed to coordinate the developmental events: the
young (<24 h) eggs produce more proteins for nutrition storage and nucleic acid
metabolism; the middle aged (24-48 h) eggs featured in enhanced levels of proteins
for organogenesis, these proteins are involved in pathways of aminoacyl-tRNA
biosynthesis, B-alanine metabolism, and protein exportation; for late-stage (48—
72 h) eggs, biological pathways of fatty acid metabolism and RNA transport are
highly activated, which matches with the physiological transition from egg to larva
[8, 9].

The different developmental patterns of the embryos from worker bees and
drones were also examined by MS-based proteomics (Fig. 12.2). It was found that
the drones start their morphogenesis earlier than workers, and the levels of mor-
phogenesis related proteins are higher in drone embryos across the embryogenesis.
Drones also produce more cytoskeletal proteins to match their larger body size. It
has also been found that drones and workers employ distinctive anti-oxidation
mechanisms [10].

Chan et al. investigated the proteome profiling of honeybee cells in culture
compared with freshly collected embryonic cells using MS-based proteomics, and
revealed that 2/3 of all the detected proteins are up-regulated during culturing. The
proteins involved in protein folding quality control and anti-oxidation are highly
up-regulated, in keeping with the cultured cells’ adaption to the unnatural envi-
ronment. Moreover, the relatively high levels of lactate dehydrogenase and aldo-
lase, related with anaerobic response and glycolysis, respectively, fits with the rich
carbon source supplied in the medium [11].



230 Y. Hao and J. Li

( a) drone emb 0 worker

WW

i
ichogical pathway anmotation Labelfree quantitation
A-0- 0

drone

(b) A-0>0

. == control
_2‘0 B RNAtreat
24h 48h  72h =
T T T 1 T 1 g X
RPL36 e v S e e e C
GAPDH RS RS S & -
Y 48h 72h
A B C

Fig. 12.2 a Shotgun proteome to investigate the mechanistic difference of embryogenesis between
the drone and worker bees. b RNA interference induced knockdown of 60S ribosomal protein L.36
(RpL36). (A) The dsRNA of gene RpL36 was injected at the concentration of 2.5 pg/pL in H,O into
freshly laid honeybee worker eggs (5 nL injected into each embryo), while an equal volume of
sterile water was injected as a control. The injected embryos were incubated at 34 °C and 80 %
humidity, and harvested at 24, 48 and 72 h. (B) Western-Blotting showing the RpL36 protein level
in the worker embryo at three stages. (C) Quantitative real time PCR showing the transcript level
RpL36 in the worker embryo at three stages. Letters “c” and “t” represent control and RNAi-treat.
The error bar is standard deviation. The asterisks show significant differences (p < 0.05) [10]
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12.3.3 Larva Stage

During larval stage, bees grow exponentially and female bees differentiate into
queens and workers in response to their diet [12]. The most striking thing of larval
stage is that the weight of the honeybee increases about 1500-fold over just 6 days
[13]. The heavy demand of nutrient and energy is correlated with the proteomic
observation of the constitutive accumulation of enolase, aldehyde dehydrogenase
and phosphoglyceromutase and fatty acid synthase. While the storage protein-larval
serum protein 2 only expressed on sixth instar, indicating that the larva stores amino
acids for the following metamorphosis [13, 14]. Moreover, Proteomic profiling of
hemolymph reveals that the levels of the immunity factors, prophenoloxidase and

elate aging of larvae for protection. However, other
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immunity factors are not up-regulated with age. These results suggested the
maturity of the immune system during larval development and might give a
explanation on why bees are susceptible to the age-associated bacterial infections
such as American Foulbrood or fungal diseases [13].

Specific genes are activated for caste determination during larval development
[15-18]. From the significant differences in protein expression of queen-intended
larvae and worker-intended larvae at 72 and 120 h, it was found that the fate of the
two castes is determined before 72 h [18]. By examining the nuclear proteome and
mitochondrial proteome of queen and worker larvae at the 3rd, 4th and 5th instars,
significant qualitative and quantitative protein expression differences between the
two castes at the three developmental stages are found. In general, queen larvae are
more active to produce physiometabolic-enriched proteins (metabolism of carbo-
hydrate and energy, amino acid, and fatty acid) and nuclear function related pro-
teins for their enhanced growth. The variations of proteins and enzymes between
the two castes also provide us with insights of polymorphism of honeybee caste
decision at the sub-cellular levels [19, 20]. These sub-cellular investigation are
consistent with what had been seen from the whole larvae [18].

12.3.4 Pupa Stage

Bees are not fed during pupa stage, which lasts ~ 13 days. During pupation, bees
undergo gradually body structure formation in the sealed wax cells, including the
head, thorax, color, abdomen, and wings. Once the pupa develops into adult, it is
ready to emerge. A research on pupa head development identified the differential
expression patterns of 58 proteins on their 2-DE gels: 36 proteins involved in the
head organogenesis are upregulated during early stages. However, 22 proteins
involved in regulating the pupal head neuron and gland development are upregu-
lated at later developmental stages [21]. These findings offered a possible expla-
nation at molecular levels of the previous found correlation between the head
weight of pupa and the production of royal jelly [22].

12.3.5 Adult Stage

Newly emerged worker bees first service as nurse bees to do cleaning, nursing,
constructing the waxcomb, guide the hive entrance as well as ventilate the hive.
Thereafter the worker bees leave the colony to visit flowers—forage for nectar,
pollen, propolis and water. Comparative proteomics reveals that his behavioral
change is linked to structural and biochemical alterations across the body of worker
bees. 15 proteins diverged significantly between nurses and foragers are found in a
whole-body proteomes and actin was used for standardization. Enzymes involved
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in ATP synthesis and consumption, sugar metabolism, such as
fructose-1,6-bisphos-phate aldolase, glyceraldehyde-3-phosphate-dehydrogenase
(GAPDH), enolase, glucosidase-like protein, are significantly elevated in foragers
to support the higher metabolic rate during flight; in keeping with the nursing role,
the jelly synthesis and transfer-related proteins and NADPH pathway are more
important for nurse bees [23].

Nurse head (without glands) has been identified rich in proteins for olfactory
system and major royal jelly proteins. Experienced foragers up-regulate proteins for
energy production, iron binding, metabolic signaling and neurotransmitter [24].

According to a most large-scale mapping of the proteome from forage brain and
nurse brain, 17 % of the total identified 2742 proteins are differentially expressed.
Proteins related to cell adhension, axonogenesis and gliogenesis, protein generation
and modification, secretion and vesicular transport-related proteins have higher
levels of expression in nurse, which is necessary for the cerebral maturation of the
young workers. However, the experienced foragers are more active to produce
synapses, enzymes for metabolism and energy generation, which is possibly trig-
gered by the requirements of learning and memorization tasks [25]. Another
research on the abdomen proteome of nest bees with different ages also reported a
maturation-dependent adjustment of lipid metabolism, which is associated with the
job transition of worker bees. Their RNAI data verify that the important changes in
carbohydrate and lipid levels during transtition are regulated by irs gene, encoding
a key regulator in insulin signaling network [26].

An in-depth comparison of the brain neuropeptidome from western bees
(Aml) and high royal jelly producing bees (RJbs) that selected from western bees
over 4 time points (newly emerged bees, 7 day-old bees, nurse bees and forager
bees) identified 158 nonredundant neuropeptides (Fig. 12.3). A small number
(14) of neuropeptide altered their expression during the labor division in both of the
bee species. However, neuropeptides related to water homeostasis, brood pher-
omone recognition, foraging capacity, and pollen collection are significantly enri-
ched in RJb. These findings indicate that both of the bee species employ a similar
neruopeptidome during their age-dependent task transitions. Moreover, neuropep-
tides are related with the regulation of RJ secretion behavior [27].

12.4 Development of Organs
12.4.1 Antenna

As social insects living in a colony, honeybee has one of the most complex odor
cues (pheromones) communication systems found in nature [28, 29]. As many as 15
glands are known to produce odor cues [30]. These chemical messengers emitted by
queen, drone and worker bee induce immediate behavior responses in other bees.
The queen bee produces unique odors to announce she’s living, so as to avoid the
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Fig. 12.3 Quantitative comparison of brain neuropeptides expression between the Italian bee
(ITb) and the high royal jelly producing bee (RJb) in a nurse bees and b forager bees. Figures on
the left are unsupervised hierarchical clustering of the differentially expressed (fold change >2 and
p < 0.05) neuropeptides, the columns represent the two honeybee stains, and the rows represent
the individual neuropeptides. The up- or down-regulated proteins are indicated by yellow and blue
color code, respectively. The color intensity changes with the protein expressional level as noted
on the key bar. The histograms on the right are the quantitative comparison of the expression trend
of the precursor proteins and their mRNA between the ITb and the RJb. (a) is significantly higher
than (b), and error bar is standard deviation [27]
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Fig. 12.4 Antennal images of honeybee drone, worker and queen. Pane a is to compare whole »
antennae image of dorsum and ventral side of honeybee drone, worker and queen. Panel b is an
enlarged segment where A an D, B and E, C and F independently represent the dorsum and ventral
side of adult drone, worker and queen’s flugellar segments. The letters on the image indicate the
different kinds of sensilla; where AC is ampullaceal or coeloconic sensilla; B is basiconic sensilla;

C is coelocapitular sensilla; ms is margin sensilla; P is poreplate sensilla; S is seta sensilla and T is
trichoid sensilla [10]

introduction of a new queen by the hive. The vergin queen also emits odors to
encourage the males to mate with her during mating flight, and to keep female
workers from mating with males [31]. In addition, odor cues are also used to
regulate the specific tasks of each individuals, such as nursing, alarming, defense
and transmitting food information [32]. In insects such as honeybee, the reception
of the odors mainly takes place in the antenna, via odorant binding proteins (OBPs)
and chemosensory proteins (CSPs), to trigger series of neural responses and finally
achieve social activities.

Early investigations on individual differences in the expression of OBPs and
CSPs found that A. mellifera larva express 3 OBPs (OBP13, OBP14, OBP15) and a
single CSP (CSP3), while forager antenna express 4 OBPs (OBP1, OBP2, OBP4
and OBP5) and 2 CSPs (CSP1 and CSP3). The ligand specificities to these organ
and age specific binding proteins may support their roles in chemoreception, which
are closely associated with the related social behavior [33].

Comparative investigations focusing on the whole proteome of antenna from
worker bees and drones reveal that OBP21, OBP2 and OBP16 are exclusively
upregulated in the worker, and OBP14 and OBP5 are significantly enriched in
drone, suggesting the specific roles of OBPs for different castes. Although different
in protein composition and abundance, both castes enrich biological pathways as
energy production, carbohydrate and fatty acid metabolism, antioxidation, and
molecular transportation. In particular, forager antenna expresses more enzymes for
the adaption of their food foraging task, including searching for food sources,
returning to nest, brood recognition and transmitting information. In contrast, these
proteins are relatively low level of abundance in drone antenna, due to their less
involvement in foraging activities as worker bees do. In keeping with the demand of
responding to sex pheromones, drones antenna-expressing proteins play important
roles in the metabolism of pheromone compounds, for example, aldh, a group of
enzymes that catalyze the oxidation of aldehydes to carboxylic acids, is suggested
to be involved in the transformation of male pheromone, which consequently
promotes the recognition by queen during mating flight. Such examples include but
not limit to jhe, carboxylesterases and FABPs [34]. Interestingly, an antenna-
specific protein 3¢ in hemolymph has increased level in drones and workers than in
queens [35]. A more comprehensive proteome comparison among drone, worker
and queen confirm again that the differential expressions of antenna proteins are
well associated with the different requirements of caste-dependent olfactory activ-
ities (Fig. 12.4).
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A following study comparing antenna proteome between Apis mellifera ligustica
(Aml) and Apis cerana cerana (Acc) further confirm that the Aml drones are more
active in carbohydrate metabolism, energy production, molecular transportation and
antioxidation to deal with their respective evolutionary process. In addition to these
biological pathways, Aml worker bees are more active in fatty acid metabolism
[36], manifesting the fact that these two species have developed their own olfactory
mechanism during the period of evolution.

12.4.2 Mandibular Gland

Mandibular glands are of special importance to queen bees. Many compounds in
queen retinue pheromone (QRP), such as queen mandibular pheromone (QMP) and
coniferyl alcohol, have been found in the queen mandibular glands. These chem-
icals keep the retinue attraction of the other bees around their queen, and also affect
many other social behaviors and activities in both short and long term in the bee
hive, including the maintenance of the hive, mating, inhibiting the ovary devel-
opment of workers, and swarming, etc. [37]. Moreover, mandibular glands of
worker bees release a highly volatile alarm pheromone when the hive is in danger
from potential enemies and robber bees [38].

To illuminate the molecular mechanistic functionality driven the mandibular
glands, proteome analysis revealed that the molecular compositions of OBPs and
CSPs in the mandibular glands are caste and age-dependent. OBP13 is of high level
of abundance in both virgin queens an newly emerged workers; OBP21 and CSP3
are up-regulated in experienced workers, drones and 2-years old queens; in addi-
tion, drones also express OBP18, whose level relatively low in females [39]. This
castes-selective manner of mandibular gland proteome signature has also been
confirmed by the investigations of aldehyde and fatty acid metabolism in worker
and queen bees [40].

12.4.3 Hypopharyngeal Gland

The hypopharyngeal Gland (HG) is an important organ to synthesize and secrete
royal Jelly (RJ), which is not only the major food for larvae and queen but also
plays a crucial role in caste determination. In parallel with the age-dependent
assignment of worker bees, HG is most active in nurse worker bees (adult bee age
5-15 days) and the secretion of the HG is rich in proteins, due to their nursing task.
Older worker bees are usually lack of bee-milk proteins in their HGs, but this can be
evoked when nurse worker bees are absent [41]. The HG of foragers contains
sucrose hydrolysis enzymes [42]. Thus HG seems to have discrete differentiation
states according to the roles of workers. The function of HG in different bee castes
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Fig. 12.5 Morphological comparison of hypopharyngeal gland between royal jelly producing
bees and Italian bees [45]

and different bee species has been investigated in detail at molecular levels by
means of proteomic analysis. The proteome comparison between Italian bees and
the strain selected for high RJ production from Italian bees (whose production of RJ
is 10 times more than that of control lines) revealed how proteome changes to help
the RJ bee to achieve the high yield of RJ production.

To sustain the central functionality of producing RJ to feed the young larvae and
queens, age-dependent proteome setting changes are observed. Generally, the
proteins expressed in HG at young age are mainly implicated in promoting the
gland growth. Proteins expressed by nurse HG are mainly major royal jelly proteins
(MRIJPs) that are important nutrients for RJ. To fit with the job switching as forager
with age growing, the levels of MRIJPs in HG decreased in the forager worker.
However, the up-regulated proteins related to the metabolism of nectar in the HG of
this stage are to help the bees translate the nectar into honey [43, 44].

Comparing with the control stock Italian honeybee (A. m.ligustica), the HG
morphology of RJ bee shows a significant increase in acini size (Fig. 12.5). To
maintain the RJ quality with the quantity increase, the abundance level of (MRJP)
in RJ produced by RJ bees significantly increased. This is important for feeding the
young larva as an efficient nutrition source. To consolidate the enhanced protein
biothythsis, wide array of biological category and pathway are induced. For
example, protein biosynthesis and protein folding activities are strengthened, pro-
tein related to carbohydrate metabolism and energy production are escalated to
providing biological fuel for the protein synthesis. Protein implicated in develop-
ment, metabolism of nucleotide, amino acid and fatty acid, transporter, cytoskele-
ton, and antioxidation are enhanced to ensure the gland development [45].

More recently, a phosphorproteome study of worker HGs across ages revealed
that most proteins are regulated by phosphorylation independent of their expression
levels. Proteins in key biological processes and pathways are dynamically phos-
phorylated with age development, including the centrosome cycle, mitotic spindle
elongation, macromolecular complex disassembly, and ribosome, indicating that
phosphorylation tunes protein activity in order to optimize cellular behavior of the
HG over time. Moreover, both complementary protein and phosphoprotein
expressions are required to support the unique physiology of secretory activity in
the HG [46] (Fig. 12.6).
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Fig. 12.6 Cross-age comparison of phosphoprotein and non-phosphoprotein expression in
hypopharyngeal gland of honeybee workers. Overlap among phosphoproteins and unmodified
proteins, overall (a); and in each age (b); Clustering of proteins based on spectral counts of
phosphoproteins and non-phosphoproteins. Columns indicate 218 over-lapped proteins, and rows
represent different ages of hypopharyngeal gland. Upper and lower panels represents expression
profiles of 218 over-lapped phosphoproteins and non-phosphoproteins (¢); Phosphorylated and
non-phosphorylated abundance profiles for selected proteins (d); Heat maps depicting spectral
counts observed across different ages of hypopharyngeal gland for sites along the length of each
protein, reflecting variable phosphorylation within proteins (e) [46]

12.4.4 Salivary Gland

The honeybee salivary system is composed of two secretory glands: cephalic SG
(HSG) and thoracic SG (TSG). Both HSG and TSG have their own protein
expression profile, suggesting of their different roles in the salivary system of
honeybee [47, 48]. The HSG activates the labor switching form in-hive work to
field work via the modulation of juvenile hormone and ethyl oleate titer. The TSG
emphasize the expression of proteins related to carbohydrate and energy metabo-
lism, protein folding, protein metabolism, cellular homeostasis and cytoskeleton, to
facilitate honey processing via the synthesis and secretion of saliva into nectar [47].

12.4.5 Brain

Social insects such as honeybee are featured in their advanced nervous system,
which_is_necessary for the survival as well as the development of not only the
individuals, but also the entire colony. Proteomic studies on honeybee nervous
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system, in particular the brain, promote our in-depth understanding of the molecular
and neural bases that underlie the diverse social behaviors of honeybee.

Mushroom Bodies (MBs) are higher regions in the brain of insect and play
crucial roles in learning and memory. Honeybee MBs have a complex layered
architecture [49], with the sub-regions of MBs are specialized to receive different
input signals, such as olfactory and visual signals [50].

A study using 2-DE based proteomics has found that 5 and 3 proteins are
selectively expressed in worker bee’s MB and Optical lobe (OL), respectively. Of
these proteins juvenile hormone diol kinase (JHDK) and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), are identified to be selectively expressed in
MB and OL. JHDK catalyze the formation of JH diol phosphate, suggesting its
activity to participate Ca®* signaling in the MB; GAPDH, involved in sugar
metabolism, is up-regulated in OL but not MB. In situ hybridization analysis further
confirms that the expression patterns and localizations of these two proteins are
cell-type and structure specific [51]. A following study by the same group has found
that endoplasmic reticulum (ER)—related genes differentially expressed in
honeybee MB. Reticulocalbin, an ER Ca** transporter, and ryanodine receptor,
contributes to ER Ca”* channel, are preferentially expressed in the large-type
kenyon cells of MB. Whereas in MB and OL, no dramatic difference is found for
the genes not related to Ca®* signaling pathways. These findings highlight the role
of Ca** signal pathway in honeybee brain in aspects of learning and memory [51].

Besides the expression in HGs, the MRJP transcripts [52, 53] as well as the
protein products [54] have also been found differentially expressed in multiple
sub-regions of the worker bee’s brain. Comparative studies between nurse brain and
forager brain show the presence of different MRJPs is age/task-related [24, 25, 55,
56]. MRJP1 and MRIJP3, represented by peptide p57 and p70, respectively, over-
expressed in nurse brain but not forager brain [56]. Differential expression patterns
of MRJPs in honeybee brain and HGs have also been verified [56]. Given the
dominant role of MRJPs in RJ, modulating the caste hierarchy, it is possible that
MRIJPs work as endogenous participants of diverse brain activities [56].

Brain function declines with age in forager bees. With increasing days spent as a
forager—so called foraging duration, workers show mechanical senescence
including the symptoms of reduced flight frequency [57], wing-wear from intense
flight [58], oxidative damage to the brain [59], level-reductions of the brain proteins
that are central to neuronal functions [60]. Calyx region of the MB is found to be
intact in structure and robust in proteome profile in foraging duration, in spite of the
significant level-decline of kinases, synaptic and neuronal growth-related proteins
in the central brain (brain without OL). Thus the distinct brain areas are differently
affected by the senescence of honeybee, and the calyx region is suggested not to be
responsible for the foraging-dependent performance decline [60]. Foragers’ brain
function decline has also been characterized by their learning deficits, which can be
overcome by reverting their job to nursing. Significant differences in the brain
proteome of forager bees with or without learning ability reveals that the recovery is
positively associated with the levels of stress response and cellular maintenance
proteins in the central brain [S5].
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12.5 Reproduction

Honeybee queen mates with an average number of 19 drones in midair, and gathers
millions of sperm she will need for her lifetime [61, 62]. The sperm has to survive
for prolonged periods of time: It takes about 40 h for the sperm to be stored, during
which over 90 % sperm will be lost; and it could take up to 8 years that the sperm is
kept between mating and egg fertilization [62]. Thus the producing of high quality
ejaculates and the beneficial environment supplied by secretions and storage organs
are crucial to maximize the reproductive success. Studies in fruit fly indicate that
the seminal fluid from male, with accessory gland secretions as the major com-
ponent, possibly affect both sperm viability and survival [63]. Moreover, the
secretions of spermathecae, the sperm storage organ of female, have been
hypothesized to facilitate the survival of the stored sperm [64]. In honeybee, the
detailed biochemical composition and physiological understanding of the sperm,
seminal fluid, spermathecae and secreations from female have been studied in detail
recently [65-70].

The proteome of honeybee sperm shares similarity with both fruit fly and
human. Many important biological pathways that contributes to the reproduction of
both human and fruit fly, have also been identified in the sperm proteome of
honeybee, including energy and amino acid metabolism, cytoskeleton maintaining,
protein folding and anti-oxidation. Besides the common set, 131 unique sperm
proteins of A. mellifera have been verified as well, mainly involved in two bio-
logical processes: nucleic acid expression and protection; enzyme regulation, for
example, GTPase regulators and kinase regulators [69].

Comparing the proteomes of the secretions from the male accessory gland and
female spermathecal gland indicates that the former contributed to the sperm sur-
vival, while the latter has positive effect on enhancing the sperm viability [68].
Applying 2-DE analysis of the sperm form fresh male ejaculates and the sperm
stored in female spermathecae, it shows that the enzymes for carbohydrate, gly-
colytic or respiratory metabolism counted for the main difference between the two
groups, in the aspect of protein abundance as well as enzymatic activity [71].

The seminal fluid of honeybee is full of enzymes, regulators and structural
proteins for energy production, antioxidation, maintaining the stability and viability
of sperm [66, 67, 68, 71]. Some are also identified to have biological activity that
affect female physiology [67]. To current stage, we have identified the specific
proteome composition in the honeybee seminal fluid. First the fluid is quite different
from the proteome of its haemolymph, though both are body fluid and full of
metabolic enzymes [67]. Second, it has a complete different composition from
sperm, especially that many glycosylations are found in seminal fluid, while no
glycoproteins are detected in sperm [67]. Third, the seminal fluid has many more
proteins that are absent from the accessory gland [67]. Interestingly, the comparison
of the seminal fluid protein compositions between honeybee, Drosophila and
human reveal that the bee is more close to human: among the 57 identified
honeybee seminal fluid proteins, 23 have homologs in human set, and only 11 have
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homologs in the Drosophila set [67]. The dissimilarity in the male genetic back-
ground between honeybee and fruit fly had also been seen by other studies [69, 72].

Intra-species studies on seminal fluid proteome of A. mellifera suggest that
evolutionary changes, including both protein abundance and modifications, hap-
pened for 16 % of all the identified proteins from three linages that had been bred
for >20 generations. These proteins have different biological functions that are
widely involved in male productive success, energy metabolism and cellular
structural proteins, and immune defense [66].

In the honeybee hive, the queen bee is the mother to produce the most, if not all,
of the offspring. The queen bee emits sex pheromones to encourage the males to
mate with her during the nuptial flight, but also emits pheromones to reduce worker
bees’ ovary activation [31]. The queen bee has a more developed ovary than worker
bees: usually consists of >150 ovarioles that allows the queen to produce thousands
of eggs per day [73]. While the ovaries of worker bees have been suppressed early
up to their larval stage, by means of apoptosis, resulting in inactivated ovaries with
only a couple of ovarioles [73]. When the queen is present and healthy, this can be
interpreted as an adaptive response. However, when the queen is absent, about
30 % of the worker bees’ ovaries can be activated to lay unfertilized eggs, which
will develop into males according to the haplo-diploid sex determination [74].

To identify the proximate factors involved in the regulation of worker bee’s
ovary activation/inactivation in honeybee, brain and ovary proteome from fertile
and sterile worker bees were analyzed using 2-DE. A total number of 223 proteins
have been identified in ovary proteome. Proteins implicated in the metabolism of
various substrates are up-regulated in rudimentary ovaries. The coincidence of the
oogenic process and the protein degradation in rudimentary ovaries suggested that
the inhibition of ovary activity is a constant interplay between the two. Moreover,
the identification of a batch of heat shock proteins, proteins with tetratricopeptide
repeats and a steroid hormones binding protein in activated ovaries further pointed
to the possibility that the activation of ovary is mediated through steroid and small
neuropeptide signaling pathway. The most striking up-regulated proteins in sterile
workers (in two of the three colonies that examined) are found to match the
polyproteins of Kakugo virus (KV) and Deformed wing virus (DWV), in ovary and
brain, respectively. On the other hand, the immune system component such as
thioredoxin peroxidase is more abundant in the activated ovaries [75]. Similar viral
load pattern has also been seen in the hemolymph in another comparative proteomic
study [76]. These results indicated the possible correlation of virus loading,
reproduction and the immunity of honeybee.

12.6 Hemolymph

Hemolymph in arthropods is the counterpart of blood as in the higher organisms.
The major role of hemolymph is to distribute nutrients and immune components
throughout the body. Thus, hemolymph is well deserved to be used as a powerful



242 Y. Hao and J. Li

indicator of individual’s physiological condition. The characterization of honeybee
hemolymph proteome is of great interests to scientists ever since the accomplish-
ment of the genome sequencing. The progress of understanding the honeybee
hemolymph and immune system is also due to the efforts of the annotation of
honeybee genome.

Key proteins in hemolymph include enzymes for the metabolism of carbohy-
drate and protein/peptide, transporters for nutrients and pheromones, structural
proteins, immune-response proteins, MRJPs and others [35, 77]. Moreover, the
identification of virus proteins in honeybee hemolymph creates the possibilities of
its being used for biomarker research [35, 77], which will be reviewed in the second
volume of this book.

The aim of the very first proteomic study of honeybee hemolymph was to
identify the basic protein component using 1-DE in combination with MS. Among
the identified 324 unique proteins, the overall overlap of adult queen, drone and
worker is less than half [35]. Extremely high levels of vitellogenin, apolipophorin
and hexamerins are presented only in the female bees. Adult workers have more
immunity-associated proteins than larvae. For example, prophenoloxidase,
prophenoloxidase-activating factor and [-1,3-glucan recognition protein are
30-50 folds more abundant in adult workers compared with larvae. These findings
suggested a possible cause for some honeybee diseases that usually affect larvae,
such as chalkbrood and American foulbrood.

The protein components changed with the development of honeybee. The he-
molymph of young larvae emphasizes the importance of proteins for priming their
rapid development and initial innate immune protection. During the honeybee’s life
transition from larva to pupa, the proteins involved in the metabolism have cor-
responding changes: from the metabolism of carbohydrates and MRIJPs, to the
metabolism of amino acids, nucleotides and fatty acids. The hemolymph of the
young pupae expressed more number of proteins related to energy store for the
preparation of their non-diet-driven pupation [78]. These protein profile changes of
hemolymph match with the honeybee’s normal life transition as nutrients and
immune agents. In addition, the hemolymph proteome coverage was significantly
increased using 2-DE and MS-based complimentary proteomics approaches [77].

The Western honeybees and Eastern honeybees have developed their own
strategies of using hemolymph for nutrients deliver and immune defense. Compared
with Eastern honeybees, the Western honeybees have stronger expressions of
proteins related to energy production, protein folding, cytoskeleton, and develop-
ment. These findings provide valuable resources for the future functional research
on hemolymph with different phenotypes [43].

One of the most important physiological changes in worker bees is that their
ovaries can be activated upon the loss of the queen and brood. To identify the
relevant proteins for ovary activity/inactivity, a comparison between fertile and
sterile worker bee’s hemolymph proteome was carried using 2-DE based pro-
teomics. Surprisingly, the sterile worker bees were found to be significantly enrich
in polypeptides from DMV and KV, suggesting more viral infections on the sterile
workers_[76]. In_comparison with_the sterile worker bees, the hemolymph of the
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reproductive worker bees have stronger immune system. Reproductive worker bees
are more rich in thioredoxin peroxidase, which is known to respond to oxidative
stress [79] and functions as an apoptosis inhibitor [80]. Serine protease 8 (SP8) and
a serine protease homolog (cSPH42), with the latter known to respond to microbial
infection, are more abundant in reproductive worker bees. In addition, odorant
binding protein 14 (OBP14) and a disc growth factor are also up-regulated in
reproductive workers [76]. Some of these highly expressed proteins in reproductive
workers are also present in queen spermathecae [70]. Aldolase involved in energy
metabolism, which is essential for forager behaviors, is dramatically down-
regulated in fertile workers. These findings match with the role switching of the
worker bee from infertility to fertility [76].

12.7 Proteomic Research of Royal Jelly

Royal jelly (RJ), a secretion from hypopharyngeal gland (HG) of worker bees, is
used as the food for all the larvae and the entire life of the queen in a colony
(Fig. 12.7). Fresh RJ is a white-yellow colloid with a variety of biological com-
pounds, including proteins, carbohydrates, lipids, minerals, vitamins, and free
amino acids. It is believed that RJ is essential to castes determination and larvae
development of honeybee [81]. RJ is also used as health supplements for its
amazing health benefits, such as prolonging lifespan, anti-aging, reducing fatigue,
enhancing immunity, control cholesterol, improving brain health. Studies suggested
that RJ may also have pharmacological benefits. RJ has been found to prevent
systemic lupus erythematosus [82], control the progression of sarcopenia [83], and
restore the expression of vascular endothelial growth factor gene in rodents. It is
suggested that RJ may be better than western medicine to treat presymptomatic
disease [84]. However, the active substances in RJ that lead to these chemical
properties are yet unknown. Since up to 50 % of the dry mass of RJ is protein, the
proteome analysis of RJ is promising for addressing these questions.

MRIJPs belong to a protein family consisting of nine members. However, in
2005, only MRIJP1, 2 and 3 were identified in A. mellifera using 2-DE, MS and de
novo sequencing [85]. MRJP4 was found for the first time in a comparison study of
the RJ from Africanized honeybees and European honeybees (A. mellifera) using
2-DE and N-terminal amino acid sequence of protein spot. Besides, remarkable
differences in heterogeneity of the MRJPs (especially MRJP3) and glucose oxidase
were identified between the two species [86]. A proteome profiling of the secretion
from HG of nurse bees identified 34 proteins, of which 27 proteins belong to the
MRIJPs family. The other proteins are ferritin-like protein, for iron storage, apisi-
min, for the regulation of MRJP1 oligomerization, and the enzymes involved in the
metabolism of carbohydrates and energy, including alpha glucosidase, glucose
oxidase and alpha amylase, alcohol dehydrogenase, aldehyde dehydrogenase. The
identification of these proteins confirmed that RJ is synthesized and secreted in the
HGs_of nurse bees_[87]. Since the sequencing of the honeybee genome
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Fig. 12.7 A frame contains plastic queen cells to collect royal jelly. Left panel is a royal jelly
frame drawing from the bee colony, and right panel is queen cell cups that remove the wax cap
and larvae with the royal jelly left in queen cell cups (Photographed by Dr. Jianke Li)

accomplished in 2006, different methods have been applied for the identifications of
MRIJP1-7 and MRIJP9 in RJ of A. mellifera. An phosphorylated venom protein was
also found in RJ, which was previously known to be present only in bee venom [88].
Two proteins related to anti-oxidation, 1-peroxiredoxin and 1-gllutathione
S-transferase S1 were identified in RJ samples from native Italian honeybees
(Aml), Carnica honeybees (A. mellifera carnica, Amc) and high RJ producing
honeybees (RJBs) that breeding selected from the native Italian honeybees using
2-DE based proteomics. MRJPs were found to be the major components in each of
the species. Many MRIJP heterogeneities were also identified, with MRJP3 the most
remarkable. It was also found that the RJ protein compositions are identical within
the three species, while the detected protein numbers are significantly lower in Amc
[89]. Of all the MRIJPs identified in Aml and Acc by 2-DE based and MS-based
proteomics, MRJP1 is the most abundant. Peroxiredoxin 2540, glutathione
S-transferase S1, and MRJP5 were detected only in the RJ of Aml. In contrast,
MRIJP7 was found only in the RJ of Acc. Glucose oxidase was identified for the first
time in the RJ of Acc in this work. The RJ production and the levels of MRJPs are
significantly higher in Aml than in Acc, suggesting that Aml needs more nutrients
for its large body size [90].

19 novel proteins were found in the RJ of Aml using 2-DE-based and MS-based
proteomics approaches. These proteins are involved in oxidation-reduction, protein
binding and lipid transport [91]. Another 13 novel RJ proteins were identified using
MS-based proteomics, with the majority of them are involved in metabolic pro-
cesses (38.5 %), and health promotion activities (46.2 %) [92].

HG, postcerebral gland (PcG), and thoracic gland (TG) are believed to synthe-
size and secret RJ proteins. Fujita et al. investigated the proteomes of these glands
as well as RJ using LC-MS/MS method. 9 novel RJ proteins, 22 putative secretory
proteins and a protein functioning in insulin signaling pathway were identified [93].
MRIJPs are derived from these glands, but are also present in other tissues, such as
brain. 3 polypeptides—p50, p70 and p128, correlated with MRJP1 and MRIJP3,
have been found with differential expressions in the sub-regions of the brain from
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different castes. These findings contribute to the elucidation of the context-
dependent roles of MRIJP family [56].

According to the proteomic comparisons of RJ from two flower blooming
seasons, where the RJ was collected at 3 time points (24, 48 and 72 h), clear
differences between the two seasons were seen. However, there is no significant
difference of the protein profiles at the 3 time points [94].

The proteome of RJ stored at different temperatures and for 80 days or one year
were investigated (=20 °C, 4 °C and Room temperature) [95, 96]. Higher tem-
peratures led to heavy degradation of protein, therefore it’s better to store RJ under
freezing conditions. MRJP4, MRJP5 and glucose oxidase, peroxiredoxin, and
glutathione S-transferase, particularly MRJPS, are the most sensitive, indicating that
these proteins could be used as the markers for RJ freshness [95, 96].

Proteins are synthesized by ribosomes through translation, may then undergo
post-translational modification (PTM) to form the mature protein product. PTM
plays a major role in the diversification of MRJPs in RJ. Methylation and deami-
dation are found in most of the MRIJPs, indicating their essential roles in RJ
function. Phosphorylation has characterized in MRJP1 (5 sites), MRJP2 (13 sites),
apolipophorin-III-like protein (2 sites) and venom protein 2 (3 sites) [97]. Applying
two complementary phosphopeptide enrichment materials and high-sensitivity MS
[27], 16 phosphoproteins carrying 67 phosphorylation sites and 9 proteins carrying
71 phosphorylation sites are identified in the RJ from Aml and Acc, respectively.
The overlap of these two species is composed of 8 phosphoproteins. However,
these proteins are more abundant in Acc RJ than in Aml RJ, which is the opposite to
the abundance level of nonphosphorylayted protein in the RJ samples [90]. Further
experimental results indicated that the phosphorylation of RJ proteins is driven by
an extracellular serine/threonine protein kinase (FAM20C-like protein) in the HG.
Interestingly, Jelleine-1II, an antimicrobial peptide phosphorylated at different sites
in RJ of Aml and Acc, has different performance in antimicrobial activity. These
differences suggest that these two species use different strategies for phosphoryla-
tion to tune their RJ proteins as efficient nutrients and immune agents [98]
(Fig. 12.8).

Glycosylation is another major PTM that very common for RJ proteins, and is
important for the functionality of RJ proteins. MRJP2a, carrying two fully occupied
n-glycosylation sites, is found to inhibit the growth of Paenibacillus larvae, which
is the primary pathogen of American foulbrood honeybee disease, with the similar
effective inhibitory concentration of tetracycline hydrochloride. It is also found to
fight against other Gram-positive bacteria such as B. subtilis and E. coli. In contrast,
MRIJP2 is inactive against these bacteria [99].

Recent efforts have been made in the in-depth and large-scale mappings of
glycosylation sites of RJ proteins. In one study, 25 N-glycosylated proteins in
Aml RJ are identified, most of which are related to the metabolic activities and the
health improvement activities [92]. A more recent study found another 23 novel
glycosylated proteins in Aml RJ and 43 proteins in Acc RJ. The absence of gly-
cosylated apidaecin, hymenoptaecin and peritrophic matrix, which are related to
anti-microbial, and. the low. inhibitory effect of N-glycosylated MRJP2 in Aml on
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Fig. 12.8 Protein sequence alignment and three-dimensional structure comparison of FAM20C
proteins. FAM20C protein of Apis mellifera ligustica (Aml FAM20C-like), Drosophila
melanogaster (Dmel CG31145, isoform C), and Homo sapiens (Hsap FAM20C) were aligned
by molecular evolutionary genetics analysis (MEGA) software (version 6.0). Three-dimensional
structures were predicted by the Phyre2 online server and displayed using SPDBV software
(version 4.1). a Protein sequence alignment. b Three-dimensional structure comparison [98]
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Fig. 12.9 Common characteristics of the identified N-glycoproteomes of RJ proteins produced by
Aml and Acc. a The proportion of recognized sequence motifs from the N-glycopeptides, for
N-X-S/T (X # P/proline); for N-G-X and N-X-V, X can be any amino acid; b the extracted motifs
using Motif-X algorithm. Only glycosites with a localization probability greater than 95 % are
considered; ¢ the distribution of N-glycosylated RJ proteins harboring single, double, and multiple
glycosites [100]

P. larvae might be the reason why Aml is more susceptible to American foulbrood
than Acc. It is also observed that N-glycosylated MRJP1 has an anti-hypertension
activity. Again, the stronger activity has found in Acc than in Aml [100]
(Fig. 12.9).

Many MRIJPs and other RJ proteins have heterogeneities, which are most likely
to be resulted from PTMs [86, 89]. The different PTM strategies employed by
honeybee species reflect their biological characteristics of long-period evolution as
Han et al. suggested in 2014. The characterization of PTM of RJ proteins will
contribute to the in-depth understanding of the properties of RJ, and benefit the
further development and utilization of RJ in various aspects.
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